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EXECUTIVE SUMMARY 

Highway safety is a top priority for everyone.  Understanding and being able to identify 

crash causes and potential mitigations is paramount.  Fatalities from crashes on U.S. highways 

are far too common. In 2012, there were 33,561 crash-related fatalities in the U.S., 217 of which 

were in Utah.  That is one death nearly every 15 minutes in the U.S. because of a crash. In Utah, 

crashes on rural roads are 3.3 times more likely to result in a death than crashes on urban roads. 

This report contains the results of the development of crash prediction models for curved 

segments of rural two-lane two-way highways in the state of Utah.  The modeling effort included 

calibration of the predictive model found in the Highway Safety Manual (HSM) as well as 

development of Utah-specific models developed using negative binomial regression.  Data for 

these models came from 1,495 randomly sampled curved segments in Utah, with crash data 

coming from years 2008-2012. 

The HSM predictive model for rural two-lane two-way highways consists of a safety 

performance function (SPF), crash modification factors (CMFs), and a jurisdiction-specific 

calibration factor.  For this research, two sample periods were used: a three-year period from 

2010 to 2012 and a five-year period from 2008 to 2012.  The HSM predictive model calibration 

factor was determined to be 1.50 for the three-year period and 1.60 for the five-year period.  

These factors should be used in conjunction with the HSM SPF and all applicable CMFs. 

A negative binomial model was used to develop Utah-specific crash prediction models 

based on both the three-year and five-year sample periods.  A backward stepwise regression 

technique was used to isolate the variables that would significantly affect highway safety.  The 

independent variables used for negative binomial regression included the same set of variables 

used in the HSM predictive model along with other variables such as speed limit and truck traffic 

that were considered to have a significant effect on potential crash occurrence.  The significant 

variables at the 95 percent confidence level were found to be average annual daily traffic 

(AADT), segment length, total truck percentage, and curve radius.  The main benefit of the Utah-

specific crash prediction models is that they provide a reasonable level of accuracy for crash 

prediction yet only require four variables, thus requiring much less data collection effort than the 

HSM predictive model. 
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1.0  INTRODUCTION 

1.1  Problem Statement 

Highway safety is a top priority for everyone.  It is important for the governmental 

agencies that plan, construct, and maintain the highways.  It is also important to everyone who 

uses them.  It could be argued that highway safety affects everyone and the U.S. economy as a 

whole because crashes create delays and societal costs that impact more than just the people 

directly involved in crashes.  Understanding and being able to identify crash causes and potential 

mitigations is paramount.  To do so, researchers have developed crash prediction models based 

on historical crash data to estimate the number of future crashes under prevailing conditions.  

Such models can be used to evaluate the contributions of physical attributes to crash occurrence 

and severity.   

Safety performance functions (SPFs) provide one avenue for crash prediction modeling.  

SPFs are regression models that estimate average crash frequency for a specific site type as a 

function of annual average daily traffic (AADT) and segment length (AASHTO 2010, Lord and 

Persaud 2004).  SPFs can be used for predicting the level of safety of a roadway by estimating 

the number of crashes that might occur given prevailing roadway conditions.  The Highway 

Safety Manual (HSM), which is published by the American Association of State Highway and 

Transportation Officials (AASHTO), contains an 18-step method for predicting average crash 

frequencies on rural two-way two-lane highways (AASHTO 2010).  The full process is referred 

to as the Predictive Method.  Within the Predictive Method are predictive models that use SPFs 

along with other factors to predict the number of crashes on a given roadway segment.  The SPFs 

in the HSM were created based on data from Minnesota, Washington, Michigan, Texas, and 

California.  The result is not necessarily a nationwide average crash prediction model; rather, it is 

an average crash prediction model based on the five states from which the data were collected.  

Thus, the predictive model requires a calibration factor that adjusts the SPF for local conditions.   

Previous research (Saito et al. 2011) developed calibration factors specific to the state 

highway system for the Utah Department of Transportation (UDOT).  The calibration factors that 

were developed were specific to tangent segments of two-lane two-way rural highways in Utah 
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because at the time of the research data were not available for horizontal curvature.  Since that 

research, UDOT performed an inventory of all highway curvature as part of its Light Detection 

and Ranging (LiDAR) asset management program.  With this additional data, UDOT desires to 

calibrate the HSM predictive model specifically for curved segments of two-lane two-way rural 

highways.  Similarly, UDOT has requested the creation of Utah-specific crash prediction models 

for two-lane two-way highways exclusive of the HSM predictive model.     

1.2  Objectives 

The research objective is to develop crash prediction models for curved segments of rural 

two-lane two-way highways in Utah using historical crash data and roadway attribute data 

recently collected as part of UDOT’s LiDAR asset management program.  

1.3  Scope 

This research analyzes curved segments of rural two-way two-lane highways managed by 

UDOT. Ancillary efforts necessary for this analysis are also performed, including development 

of an algorithm to identify and categorize curved segments given the point cloud data provided 

by UDOT’s LiDAR asset management program. 

1.4 Purpose and Need 

The purpose of this research is to provide UDOT engineers with crash prediction models 

for curved segments of rural two-lane two-way highways.  These models use historical crash 

data and roadway attribute data recently collected as part of UDOT’s LiDAR asset management 

program.  This is accomplished by calibrating the HSM crash prediction model for rural two-lane 

two-way highways as well as by creating Utah-specific models.  The crash data come from years 

2008-2012, and are assigned to two data groups: a three-year dataset from years 2010-2012, and 

also the full five-year dataset.  These models allow UDOT to better understand the way highway 

curvature affects crash occurrence and severity.  The models identify which factors play the 

largest role in crash prediction.  With this information, UDOT can focus its efforts on 

improvements that will make the most difference in safety.   
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The need for this research comes from the risk that is present every time someone drives 

an automobile.  Operating an automobile is inherently dangerous and is something to which most 

people do not give a second thought.  For government agencies charged with designing, building, 

and maintaining highways, safety is a top priority.  The most important reason to put safety first 

is the value of human life.  Fatalities from crashes on U.S. highways are far too common.  In 

2012, there were 33,561 crash-related fatalities in the U.S., 217 of which were in Utah (NHTSA 

2013).  That is one death nearly every 15 minutes in the U.S. because of a crash.  In Utah, 

crashes on rural roads are 3.3 times more likely to result in a death than crashes on urban roads 

(UDOT 2013).  Lack of funding is most agencies’ main obstacle to safety improvements.  Many 

projects and improvements are shelved or delayed due to insufficient funds.  Crash prediction 

modeling helps agencies focus on the most cost-effective measures to improve highway safety. 

1.5  Outline of Report  

The executive summary presented an overview of this report and its findings.  This 

chapter presented an overview of the report along with a stated purpose and need for this 

research.  Chapter 3 presents a literature review of topics related to this research.  Chapter 4 

discusses the data preparation necessary for accurate and complete modeling and Chapter 5 

addresses the methodology for crash prediction modeling.  Chapter 6 presents and evaluates 

modeling effort results, followed by Chapter 7, which contains conclusions, recommended use of 

models, and further research needs.  
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2.0  LITERATURE REVIEW 

2.1  Overview 

This literature review contains topics related to highway geometry and safety as well as 

the acquisition and analysis of data, including LiDAR, highway curvature, SPFs, Crash 

Modification Factors (CMFs), calibration factors, and statistical methods. 

2.2  Light Detection and Ranging (LiDAR) 

LiDAR data are well-suited for transportation applications.  LiDAR is especially useful 

when combined with geographic information system (GIS) technology to determine accurate 3D 

surface representations and characteristics (Pradhan and Rasdorf 2009). 

Using LiDAR technology to inventory highway facilities is a practice that many 

government agencies and private companies are incorporating as one of their tools for asset 

management (Ellsworth 2013).  Manual surveying and observation used to be the only methods 

available until aerial photography progressed to a point such that horizontal curves and lane 

widths could be measured with relative ease directly from the imagery.  Digital elevation models 

(DEM) created from aerial photographs and satellite imagery has become widely available and 

are generally accurate to +/- 7 meters (Rasdorf et al. 2004).   

LiDAR is capable of providing information at high spatial resolutions and accuracies.  

Pradhan and Rasdorf (2009) discussed the accuracy of LiDAR data, and in 1999, LiDAR data 

were found to be accurate to +/- 15 centimeters.  Figure 2.1 shows a sample LiDAR image 

capture that exemplifies the accuracy level of LiDAR compared to the image captured by 

Roadview Explorer, which is a high-resolution photolog database of all UDOT roads. 

Many transportation agencies are utilizing mobile vehicles to collect a wide variety of 

asset data (Findley et al. 2013).  In 2011, UDOT commenced a LiDAR project that would 

eventually collect highway infrastructure data for every state road in Utah.  The data have an 

average accuracy of +/-3 centimeters (Ellsworth 2013).   
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Figure 2.1 LiDAR Capture (Ellsworth 2013) 

 

As technology and machinery become more sophisticated, accuracy naturally improves.  

LiDAR employs a significantly higher concentration of data points than surveying or DEM 

(Findley et al. 2012).  Thus, less interpolation is required and the points create a redundancy to 

reduce error.  LiDAR data are an excellent supplement to existing highway data inventories as 

they provide a validation of existing data (Findley et al. 2012). 

2.3  Highway Curvature 

Highway curvature was an important focus of this research.  A previous study by Saito et 

al. (2011) focused on straight segments because curvature data were not available. However, 

because of the availability of curvature data from UDOT’s LiDAR project, this research was able 

to study the effect of horizontal and vertical alignment on SPFs.   
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Curves can be found on almost every highway in the U.S.  They require careful design 

and implementation to maintain a high level of safety.  Despite safety design measures, 

approximately 25 percent of all fatal crashes in the U.S. in 2002 occurred on horizontal curves 

(Khan et al. 2012).  This does not include crashes that occurred on vertical curve segments.   

Previous research has identified curvature as one of the most significant predictors of crashes 

(Easa and You 2009, Lord et al. 2010). 

Curves can be very different in appearance and design.  There are horizontal curves, 

vertical curves, and curves that combine both.  Sharpness is the most distinguishing factor of 

horizontal curves.  Sharpness is really a measure of radius or curvature.  Although there are more 

crashes on sharper curves, sharpness is not the only factor.  Narrower curve width, lack of spiral 

transitions, and superelevation deficiency all contribute to higher crash rates on curves (Zegeer et 

al. 1992).  Approximately 70 percent of curve-related fatal crashes were single-vehicle crashes in 

which the vehicle left the roadway and struck a fixed object or overturned (Srinivasan et al. 

2009).  Curves are inherently more dangerous than straight sections because drivers are required 

to maneuver rather than simply maintain their course.   

In some studies, road segments must have a minimum degree of curvature to be classified 

as a curve.  Khan et al. (2012) determined that 3.45 degrees was a good break point for 

distinguishing segments that behaved like straight sections versus curved sections. Segments 

with less than 3.45 degree curvature behaved similarly to straight sections.   

Determining segmentation of highway curves can prove difficult as well.  Srinivasan et 

al. (2009) used global positioning system (GPS) coordinates to track horizontal alignments.  The 

data were then used to determine where tangents, arcs, and spirals began and ended. 

All else being equal, higher traffic volumes and longer curves were also associated with 

significantly higher numbers of curve-related crashes.  Ranges of crash reductions for horizontal 

curve improvements were determined for flattening curves, widening lanes, widening paved 

shoulders, adding unpaved shoulders, adding spiral transitions, and improving superelevation 

(Zegeer et al. 1992). 
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Several factors affect safety on curves including signage, pavement markings, and 

roadside hazards (Labi 2006, Zegeer et al. 1992, Khan et al. 2012).  In a study on rural two-lane 

roads in Indiana, Labi (2006) found that many of the roads observed had deficiencies in signage 

and markings.  Also cited in the study was a sobering statistic: the death rate for motorists on 

rural roads was more than 2.5 times the rate for driving on all other roads. 

Some factors have been shown to have low impact on safety.  For highway segments with 

a degree of curvature greater than 3.45 degrees, the use of advisory signs is not a significant 

factor (Khan et al. 2012).  Hauer (1999) discarded lane width as a factor, specifically 11-foot 

versus 12-foot lanes.  Conventional wisdom says that a larger lane would be safer, but Hauer’s 

research showed more crashes in the 12-foot lanes than the 11-foot lanes.   

Crash modeling involves various factors.  The most important of these is the human 

factor, which is very difficult to quantify and describe.  The best remedy is collecting more data 

and creating jurisdiction-specific calibrations of crash prediction models. 

2.4  Safety Performance Functions (SPFs) 

SPFs are regression models that estimate average crash frequency for a specific site type 

as a function of AADT and segment length (AASHTO 2010, Lord and Persaud 2004).  SPFs 

developed in a specific jurisdiction or on a general level can be recalibrated for a different 

jurisdiction.  The HSM contains SPFs with documented calibrations (Fitzpatrick et al. 2008). 

The HSM SPF for rural two-lane two-way road segments is shown in Equation 2-1. 

                                  (2-1) 

where,  Nspf  =   number of predicted annual crashes, 

AADT  =   average annual daily traffic, and  

 L =   segment length (mi). 

 

This model assumes that the annual number of predicted crashes is directly proportional 

to the amount of vehicles that travel through the highway segment.  By converting AADT to an 
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annual value (multiplying by 365) and changing the order of magnitude (multiplying by 10
-6

), 

the annual number of predicted crashes becomes million vehicles miles traveled (VMT), which is 

used as a surrogate of exposure.   

The HSM was released in 2010 after much research and preparation.  Very few studies 

have been published on the HSM crash prediction models for rural two-lane two-way highways 

since its publication.  In 2011, a study was performed to calibrate the HSM to predict total 

crashes on highways in Oregon (Xie et al. 2011).  In this particular study, the guidelines for 

calibration set forth in the HSM were followed.  The study mentioned specifically the difficulty 

in preparing the dataset and making local adjustments for items such as sample sizes for 

underrepresented facility types.  The target number of 100 crashes per year could not be achieved 

at low-volume intersections.  Sample size estimation procedures were applied to determine how 

many crashes could reasonably be expected, and then the target number of crashes was modified.  

Also, some minor road AADT values were difficult to obtain.  In certain regions, the locally 

maintained roads carried more traffic than the state highways.  A model was created to estimate 

AADT on rural highways in order to correct for this problem.  The model used variables 

including population, income, and distance from freeway, along with geometric design 

information.  These variables allowed the AADT to be estimated in a manner consistent with the 

rest of the state highway system. 

Any number of variables can be used in a model.  The key is choosing the variables that 

are most appropriate and affect the SPF the most.  Data collection costs increase as the number 

of variables increases.  The HSM model (AASHTO 2010) uses several variables for rural two-

lane two-way highways including lane and shoulder widths, curvature, driveway density, and 

roadside hazards.  There are certain base conditions that the HSM lays out such as 12-foot lanes, 

6-foot paved shoulders, five driveways per mile, a roadside hazard rating of three, and an 

absence of curvature, rumble strips, passing lanes, two-way left-turn lanes (TWLTL), lighting, 

and automated speed enforcement.  Deviations from this can still be modeled with CMFs, which 

are multiplied by the number of predicted annual crashes found by the base crash prediction 

model.  The HSM specifies that SPFs should incorporate traffic volume and crash frequency, 

while geometric design and traffic control features should be incorporated through CMFs. 
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SPFs tend to be simplistic because they often contain predictive rather than actual causal 

factors (Lord and Persaud 2004).  As described above, causal factors including human errors are 

very difficult to model.  Hence there is a need to adjust SPFs by way of CMFs, which will be 

discussed next. 

2.5 Crash Modification Factors (CMFs) 

CMFs represent the relative change in crash frequency due to a change in one specific 

condition such as geometric design or traffic control (AASHTO 2010).  Transportation safety 

analysts use CMFs because they allow base-line models to be recalibrated for different 

jurisdictions and conditions.   

For rural two-lane two-way highway segments, the HSM model has CMFs for 12 design 

and control features:  lane width, shoulder width and type, horizontal curve length and radius, 

horizontal curve superelevation, grade, driveway density, centerline rumble strips, passing lanes, 

two-way left-turn lanes, roadside design, lighting, and automatic speed enforcement (AASHTO 

2010).   

CMFs are developed with two variables: location and time.  By keeping time constant, a 

cross-sectional analysis can be performed.  Keeping location constant will render a before-after 

analysis (Gross et al. 2010).  For example, a study on similar roads in California and Texas at the 

same time can be classified as a cross-sectional analysis.  If the road in California is observed 

this year and compared to the same road last year, it can be classified as a before-after analysis.  

Research from Gross et al. (2010) states that before-after analyses are preferred to cross-sectional 

analyses because an actual change can be observed.   

In many instances, multiple CMFs can be used (Gross et al. 2010).  Care must be taken, 

however, if two or more CMFs are used simultaneously because their effect may be compounded 

if there is any correlation among them (AASHTO 2010, Fitzpatrick et al. 2008, Gross et al. 2010, 

Lord et al. 2010).  Variables need to be independent of each other if they are to be used together.   

When changes are made to highway geometry and/or segmentation, CMF calibration will 

need to be performed.  Hauer (1997) claimed that driver behavior can be affected any time there 
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is a change.  For example, a road that is repaved may provide an increased sense of safety even if 

the actual highway geometry is identical.  This increased sense of safety is in addition to the 

actual increase in safety that comes from replacing poor pavement (Labi 2006).  Drivers may 

increase their speed in response to the perception of increased safety, thus altering the condition 

that had existed in previous data.  Before-after analyses become cloudy when multiple variables 

change simultaneously, especially when driver behavior is involved.  While a longer study 

period may help to account for natural variability and regression to the mean, a longer study 

period increases the likelihood that site conditions have changed.  The HSM (AASHTO 2010) 

recommends estimating expected crash frequency for each year in a study period as a way to 

address this limitation. 

2.6 Calibration Factors 

The HSM predictive model multiplies the SPF crash frequency prediction by a calibration 

factor to account for differences in the jurisdiction and time period being analyzed versus the 

data on which the model is based (AASHTO 2010).  These calibration factors can adjust for 

climate, animal population, driver population, crash reporting threshold, and crash reporting 

practices.  The HSM recommends new calibration factors every two to three years.  The 

calibration procedure includes identifying facility types, selecting sites, obtaining data, applying 

the predictive model to predict total crash frequency at each site, and computing calibration 

factors.  The computation is simply a ratio of the sum of the observed crashes at all sites to the 

sum of the predicted crashes at all sites.  The calibration factor will vary for each facility type.  

Calibration for rural two-lane two-way highways requires several data elements including 

segment length, AADT, horizontal curve length and radius, lane width, shoulder type and width, 

and the presence of two-way left-turn lanes (AASHTO 2010).  Other data such as spiral 

transition presence, superelevation, percent grade, lighting presence, driveway density, passing 

lane presence, short four-lane presence, centerline rumble strip presence, and roadside hazard 

rating are desirable, but not required.  For these optional data, assumptions can be made if the 

actual data are not available (AASHTO 2010).  The assumptions are laid out in the HSM, with 

most defaulting to the agency design policy. 
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2.7 Statistical Models 

Choosing a statistical method for analysis will depend on the jurisdiction and what 

variables and factors are important to include.  Poisson regression is one of the most suitable 

techniques for crash prediction modeling because highway crashes are discrete rare events and 

crash counts are non-negative integer variables (Labi 2006).  Labi goes on to explain that the 

Poisson approach has a crucial weakness, which is the assumption that the crash distribution 

mean and variance are equal (Labi 2006).  This is rarely the case with crash analysis.  

The negative binomial (NB) model allows for additional variance representing the effect 

of omitted variables.  Fitzpatrick et al. (2010) used NB regression models to determine the 

effects of independent variables on crashes on rural four-lane highways in Texas.  Srinivasan et 

al. (2009) used an empirical Bayes (EB) before-after analysis to account for potential selection 

bias and regression to the mean (RTM).  The HSM includes the EB model, and has thus 

established it as the standard method for road safety analysis (AASHTO 2010, Labi 2006).   

2.8 Literature Review Summary 

Using LiDAR data to account for highway geometry and conditions is a new approach 

that will be of benefit to transportation agencies.  Understanding how curved and straight 

sections affect crash data will allow for better planning and implementation of new roads and 

changes to existing roads.  Since curves tend to be more dangerous than straight segments, 

proper analysis needs to be performed to distinguish curved segments from straight segments.   

The HSM model includes an SPF to predict crash frequency with base conditions, one or 

more CMFs to account for site-specific conditions, and a calibration factor to adjust the 

prediction to local conditions at the site.   

Curved segments provide an entirely new variable when creating SPFs and CMFs.  

Proper segmentation of curves and tangents will ensure that calibrations are accurate and 

reliable.  Understanding the characteristics of variables and the relationship they have with each 

other will prevent redundancy and overestimation of a CMF.   
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3.0 DATA PREPARATION 

3.1 Overview 

The first step of data collection was to randomly select segments representative of rural 

two-way two-lane highways in Utah.  The next step was to gather sufficient data about segment 

attributes that could affect the predictive power of the crash prediction models (i.e., variables in 

the HSM predictive models).  While the segments did not need to meet the base conditions, 

attribute identification was necessary to determine the value of an appropriate CMF. 

This chapter presents the scope of data collection, the Horizontal Alignment Finder 

(HAF), resources used for data collection, limitations of the data and data collection resources, 

proper sampling, facility data, and crash data.  A summary concludes the chapter. 

3.2 Scope of Data Collection 

This study included an analysis of tangent segments and curved segments.  The tangent 

segments were selected from the previous research of Saito et al. (2011) in which rural two-way 

two-lane highways in Utah were randomly selected.  The selection was limited to homogeneous 

tangent sections due to data limitations, especially curve-related data, as well as the scope of the 

research.  Therefore, the main data collection effort of this study was focused on finding curve-

related data such as radius, point of curvature (PC) and point of tangency (PT).  

3.3 Horizontal Alignment Finder 

The HSM crash prediction models consist of a set of variables describing the conditions 

of the segments selected.  Curve radius is one of the most important variables for analyzing rural 

two-lane two-way highways but it has historically been difficult to collect.  For this reason, the 

previous research done by Saito et al. (2011) focused on tangent segments of the rural two-way 

two-lane highways.  Now that data for curved segments is available through UDOT’s LiDAR 

program, it is possible to analyze curved segments in addition to tangent segments.  Curved 

segments have more variation in their attributes, classifications, and accuracy (Findley 2011).   
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The highway geometric dataset provided by the LiDAR program was inadequate for this 

research, mostly because it did not clearly and accurately identify the PC, PT, or other curve 

attributes.  The major issue was that the LiDAR dataset segmented more than half of all curves 

into more than one segment.  In other words, one curve was classified as having multiple PCs 

and PTs, creating the appearance of multiple curves of varying length and type.  This 

segmentation would not accurately reflect the reality of the curves, and would therefore produce 

inconsistent crash analysis results.  The HAF algorithm was developed to combine the LiDAR 

dataset’s erroneous curve segmentation into segments more closely in line with true conditions.  

This method proved to be a crucial ancillary effort to this project.  

The HAF combines curve segments at a reasonably high success rate (85 percent or 

better).  The algorithm is described in more detail in a separate paper (Cook et al. 2015).  The 

LiDAR dataset included tabulated data for each segment, including the milepost.  The algorithm 

uses this tabulated data to compare attributes of each consecutive segment and then combines the 

segments that have sufficiently similar geometry.  It performs this combination task by 

identifying each segment as either a tangent, part of a unique curve, or a unique curve all on its 

own.  It then combines all partial segments to make unique curves.  After this manipulation, a 

combined curve segment extends from the beginning of the first combined segment to the end of 

the last combined segment.  It also has a filter to catch and remove erroneous curves that often 

appear in areas near intersections.  These three steps—Identification, Combination, and 

Removal—are the basic idea behind the procedure.  Figure 3.1 presents the segmentation process 

used by this algorithm. 

The identification and combination steps are conceptually separated, but they are closely 

connected by the mechanism the HAF algorithm uses to associate them.  The identification step 

works by classifying each segment as either a tangent or a curve.  Each curved segment is 

assigned a curve number, which is unique for each curve, but not necessarily for each segment. 

In other words, three constituent segments of a curve would be assigned the same number.  This 

is done by comparing each segment to the segment immediately prior and assigning them the 

same curve number if they are sufficiently similar.  In the combination step, all segments with 

the same curve number are grouped into one larger segment and their attributes are combined in 

various ways as discussed below. These two steps are presented visually in Figure 3.2. 
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Figure 3.1 The HAF Algorithm Segmentation Steps 

 

The attributes are combined according to the number of segments in each curve number.  

If there is only one constituent segment, the attributes of the segment become the attributes of the 

curve.  If there is more than one segment, the attributes are combined from all the constituent 

segments.  A detailed flowchart of the segment combination process is shown in Figure 3.3. 

Four parameters were used to determine if each segment should be classified as a partial 

curve, a unique curve, or a tangent.  The parameters included Segment Length, Segment Radius, 

In-Curve Radius/Length Ratio, and Curve Length.  The first three are used in identification and 

combination, while the fourth is used in the removal step.  The algorithm compares each 

segment’s attributes to those of the previous segment and these parameters.  These comparisons 

become the inputs for a weighting scale from -7 to +7 (arbitrarily selected for convenience), 

including 0.  The weighting scale classifies each section as a curve or tangent. 
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A positive weight classifies the segment as a curve, and a negative classifies it as a 

tangent.  A 0 weight is reserved for cases in which the road is in a curve, yet the next segment is 

obviously not part of the same curve for reasons other than the radius of curvature (e.g., the route 

changes, the direction of travel reverses, or the direction of curvature reverses).  No segment is 

permanently assigned a 0 weight. The HAF algorithm merely uses the 0 weight as a temporary 

measure to force the segment to be analyzed without the previous segment’s attributes. The 

segment is then assigned a new number if it is determined to be a curve. 

The HAF analysis successfully identified curves approximately 90 percent of the time. It 

correctly placed the PC and PT at a range between 79 to 90 percent of the time.  Although these 

results are not perfect, they are as good as or better than any other available method.  Curve 

selection randomization and curve buffering to include superelevation runoff and tangent runout 

likely mitigated the margin of error in most of the problematic curves. 

 

 

Figure 3.2 Representation of Identification and Combination of the HAF Algorithm 
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Figure 3.3 Combination Schema for Each Segment 

3.4 Resources 

Data came from various sources throughout the process.  The availability and 

accessibility of data online allowed for a widespread survey of segments across the state.  In 

many cases, the different resources had redundant features that allowed for data verification.  

The resources used in the data collection process included Google Earth, Roadview Explorer, the 

UDOT Data Portal, and the UDOT Crash Database.   

3.4.1 Google Earth 

Google Earth (2014) was the source of all aerial imagery used in the data collection.  

Aerial imagery was used to obtain lane width, lane configuration (including passing ability), and 

driveway count data.  The lane widths were obtained by using the measure tool built into the 
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software.  Google Earth was also used to verify shoulder width and the presence of rumble strips 

and lighting where possible.  In addition to the collection of specific attributes, Google Earth was 

used to gain a general understanding of the segment and the surrounding features.  It was during 

this preliminary observation that many segments were removed from the dataset of randomly 

selected curved segments.  The criteria for segment removal are discussed later in this chapter. 

3.4.2 Roadview Explorer 

For the attributes that required street-level imagery, Roadview Explorer (UDOT 2012) 

was the principal resource.  This included rumble strip presence and lighting.  It was also used to 

confirm other attributes such as passing ability, driveway count, and lane and shoulder widths.  

Roadview Explorer is a Java platform application consisting of searchable and navigable 

imagery collected by a vehicle mounted with cameras that drove every state road in Utah.  The 

program has the ability to jump to a specific milepost, down to the thousandth of a mile, on any 

road included in the system.  It also has the ability to virtually travel the road by advancing the 

images in a slideshow format, giving the illusion of driving the road.  This feature was especially 

helpful in navigating the road from start to finish for each of the segments selected for analysis.  

The navigation can move forward and backward for both directions of travel. 

3.4.3 UDOT Data Portal 

The UDOT Data Portal (UDOT 2014a) contains a large volume of data available for 

download in a variety of formats.  The formats include shapefiles for use in GIS software, KML 

files for use in Google Earth, spreadsheets, and text files.  The data gathered from the UDOT 

Data Portal included the actual roadway file, speed limits, shoulder widths, AADT, and truck 

percentages. These datasets were brought into a GIS map as shapefiles, which allowed attributes 

to be tied to the segments. 

3.4.4 UDOT Crash Database 

The UDOT Crash Database (UDOT 2013) contains all recorded data pertaining to every 

crash on Utah state roads.  Most of the data come from police reports and crash investigators.  

The data recorded for each crash include date and time, route and milepost, weather conditions, 

cause, vehicles involved, passengers involved, severity, light conditions, work zone conditions, 
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and road surface conditions.  The Crash Database is not accessible online.  Special permission 

must be granted to access the specific files. 

3.5 Data Limitations 

Many crashes in the database are located just before the start of a curve or just past the 

end of a curve.  This could indicate that the entrance or exit of a curve is dangerous in its own 

right.  However, law enforcement reporting often lacks crash location accuracy.  Some site 

investigators use a portable measuring wheel to measure from the nearest milepost.  Others use a 

GPS receiver to pinpoint the site of the crash.  Unless the reporting takes place at the actual site 

of the crash, the GPS coordinates will not be accurate.  If the reporting takes place in a vehicle 

parked near the site, the crash may be recorded at the parking location.  Superelevation runoff 

and tangent runout lengths were manually added to both ends of every curve regardless of 

whether those elements were present on the road. The purpose of doing so was to address 

possible reporting inconsistencies by allowing crashes to be tied to curve locations where they 

might otherwise show up in the data a short distance away from curves.  The calculations for 

these lengths are found in Section 3.7. 

3.6 Proper Sampling 

Some segments were removed from the dataset at various points in the data compilation 

process.  Duplicate or overlapping segments were removed immediately based on route number 

and mileposts.  Segments that were in urban or residential areas were removed.  Segments with 

speed limits lower than 30 miles per hour (mph) were removed.  The reasoning is that speed 

limits lower than 30 mph are generally associated with high pedestrian traffic, residential areas, 

and/or vehicles stopping for roadside attractions (such as the waterfall on the right side of Figure 

3.4).  While these conditions are not necessarily grounds for removal, they do not fit the purpose 

of identifying truly rural segments.   
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Figure 3.4 Example of Segment with High Pedestrian Traffic (UDOT 2012) 

 

If the lanes were not striped or if they were less than 9 feet wide, the segment was 

removed.  Segments that contained a stop sign, signal, or other traffic control device for the main 

directions of traffic were removed since their inclusion would be better suited for an intersection 

analysis.  In some areas, the segment included a 90 degree or near-90 degree turn from one 

cardinal direction to another with a very small curve radius.  This was encountered where a route 

traveled on an east/west roadway and then the route designation changed to a north/south 

roadway.  Thus, the change was usually at a four-way intersection where the two legs of the 

designated route received traffic flow preference.  These segments were removed regardless of 

the presence of traffic control devices.  Several segments were within national and state parks 

and recreation areas.  While that did not merit immediate removal, most of the segments within 

these park and recreational areas were near on-road services such as tollbooths, information 

booths, boat launches, ranger stations, and recreation vehicle dump stations.  These on-road 
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services prevent free-flow operation, and therefore the segments that contained or were near any 

of these services were removed from the dataset. 

3.7 Facility Data 

The facility data that were collected include curve radius, degree, class, curve buffer, 

grade, speed limit, rumble strip presence, lane and shoulder width, driveway density, passing 

ability, lighting, AADT, and truck percentage.  Most of these factors are the variables used in the 

HSM predictive models while others, such as speed limit and truck percentage, were selected due 

to their perceived effect on highway safety. 

3.7.1 Curve Radius, Degree, and Class 

Each segment was analyzed to determine the curve radius, curve degree, and curve class.  

ArcGIS (ESRI 2012) was used to measure the radius (in feet) and the degree of curvature (in 

degrees) for each curve.  The curve class was determined from the definition in the Highway 

Performance Monitoring System (HPMS) (FHWA 2014).  The classification breakdown is 

shown in Table 3.1. 

Table 3.1 HPMS Curve Classification Breakdown (FHWA 2014) 

 

 

3.7.2 Curve Buffer 

As discussed previously, it is possible that not all curve-related crashes are recorded 

between the PC and PT.  This could be due to inaccurate recording or simply because the crash 

occurred just before entering or just after exiting a curve.  The full length of superelevation 

Curve 

Classification
Range of Values

A Under 3.5 degrees (i.e., 0.061 radians)

B 3.5 - 5.4 degrees (i.e., 0.061 - 0.094 radians)

C 5.5 - 8.4 degrees (i.e., 0.096 - 0.147 radians)

D 8.5 - 13.9 degrees (i.e., 0.148 - 0.243 radians)

E 14.0 -27.9 degrees (i.e., 0.244 - 0.487 radians)

F 28 degrees (i.e., 0.489 radians) or more
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runoff and tangent runout was added to the length of the curve on both ends as a buffer to 

compensate for possible inaccuracies and include crashes in the immediate vicinity of the curve.   

Superelevation runoff is the length required to transition the cross slope of a road from 0 

percent on the outer lane (the location of adverse crown) to a superelevated position on a curve.  

A cross slope of 0 percent on the outer lane is a level surface while the inner lane still has the 

cross slope value.  Superelevation runoff includes a portion within the curve and a portion 

outside the curve, with the PC or PT denoting the start and end of a curve, respectively.  The 

proportion of runoff length in the tangent section varies from 0.6 to 0.8, with most agencies 

using 0.67 for all street and highway curves (AASHTO 2011).  This research is based on the 

same assumption, and for convenience, a proportion of two-thirds (2/3) was used.  Equation 3-1 

shows how to calculate superelevation runoff (AASHTO 2011). 

   
(   )  

 
          (3-1) 

where,  Lr  =  minimum length of superelevation runoff, ft.; 

 w =   width of one traffic lane, ft.; 

 n1 =  number of lanes rotated; 

  ed   =  design superelevation rate, percent; and 

 Δ =   maximum relative gradient, percent. 

 

A value of 6 percent design superelevation was assumed due to lack of knowledge about 

actual conditions.  This is UDOT’s maximum design superelevation rate (UDOT 2008).  The 

maximum relative gradient comes from AASHTO (2011) and is shown in Table 3.2.  Tangent 

runout is the length required to transition the cross slope of a road from normal cross slope to 0 

percent.  Equation 3-2 shows how to calculate tangent runout (AASHTO 2011).  For this study, a 

normal cross slope rate of 2 percent was assumed. 
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Table 3.2 Maximum Relative Gradient (AASHTO 2011) 

 

 

   
   

  
            (3-2) 

where,  Lt  =  minimum length of tangent runout, ft.; 

 eNC =   normal cross slope rate, percent; 

 ed   =  design superelevation rate, percent; and 

 Lr =  minimum length of superelevation runoff, ft. 

3.7.3 Grade 

All segments were evaluated for grade.  The most reliable data came from ArcGIS 

analysis, which included latitude, longitude, and elevation data for each start and end point.  

Elevation difference was divided by segment length, as measured in ArcGIS.  The absolute value 

of the quotient became the decimal value for the grade.  The grade was converted to a percentage 

to be consistent with standard reporting. 

Design 

Speed 

(mph)

Maximum 

Relative 

Gradient (%)

Equivalent 

Maximum 

Relative Slope

15 0.78 1:128

20 0.74 1:135

25 0.70 1:143

30 0.66 1:152

35 0.62 1:161

40 0.58 1:172

45 0.54 1:185

50 0.50 1:200

55 0.47 1:213

60 0.45 1:222

65 0.43 1:233

70 0.40 1:250

75 0.38 1:263

80 0.35 1:286
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3.7.4 Speed Limit 

Speed limit data were obtained from UDOT (2014b) and verified whenever possible via 

Roadview Explorer (UDOT 2012). 

3.7.5 Rumble Strip Presence 

The rumble strip presence data available from UDOT proved unreliable.  It was used as a 

base for analysis but each segment was analyzed based on the information obtained in Roadview 

Explorer (UDOT 2012) for the actual conditions.  Rumble strip presence was recorded for 

centerline (interior) and shoulder (exterior) implementation. 

3.7.6 Lane Width 

Lane width was measured via Google Earth (Google 2014).  Each road was measured 

from shoulder line to shoulder line and divided by two.  Certain roads had asymmetrical 

arrangements, and in those cases, the average lane width was recorded.  Using Google Earth had 

its limitations, especially when the roadway was adjacent to mountainous or rolling terrain.  The 

software would sometimes assume that the roadway followed the general slope instead of being 

on a level surface made possible by cut and fill techniques.  Nevertheless, the measuring feature 

on Google Earth would show the map distance and the ground distance.  The map distance is 

based on latitude and longitude values while ground distance accounts for variations in elevation.  

The ground distance measurement is almost always larger than the map distance since slope is 

included in the measurement.  The ground distance was always chosen for consistency.  Google 

Earth was the most cost effective means of obtaining the lane width data since the data were not 

available from UDOT while this study was underway.  The HSM predictive model requires all 

lane widths to be rounded to the nearest whole number.  Figure 3.5 shows how the lane width 

data were collected in Google Earth.  The line spanning the width of the highway is the ruler tool 

within the software.  Taking the measurement of the full width allowed an average lane width to 

be calculated with only one measurement rather than one per lane.   
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Figure 3.5 Lane Width Measurement in Google Earth 

 

3.7.7 Shoulder Width 

Shoulder width data were obtained from UDOT (2014a).  However, they were verified on 

Google Earth (2014) at the same time as the lane width.  The measurements were taken from the 

edge of pavement to the shoulder line.  This was done for both sides and an average was 

calculated. 

3.7.8 Driveway Density 

Driveways were counted using Roadview Explorer (UDOT 2012) and Google Earth 

(2014).  The HSM predictive model specifies that a driveway should only be counted if at least 

one vehicle uses it per day (AASHTO 2010).  This requirement relies on a very subjective 

evaluation since driveway counts were not available.  Residential accesses were always assumed 

to be used at least once per day, and were thus counted.  Farm and other accesses required an 

evaluation of tire tracks and markings to determine the frequency of use.  When tire tracks and 

markings were plentiful, it was assumed that the driveway in question was used at least once per 
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day.  Driveways on opposing sides were counted separately, even if they were aligned like a 

four-way intersection.  Accesses to off-street rest areas were counted.  Turnouts and extended 

shoulders for view areas were treated as one driveway unless there were defined accesses.  A 

driveway that served two or more properties was still treated as one driveway.  Side-by-side 

driveways were treated as separate driveways unless they merged into one driveway before 

accessing the road.  Driveway density was calculated by dividing the number of driveways along 

the segment by the length of the segment.  The units of driveway density are the number of 

driveways per mile. 

3.7.9 Passing Ability 

The HSM predictive model allows for segments with conventional passing or climbing 

lanes, provided that the additional lanes are for a limited distance.  Similarly, short four-lane 

sections are allowed under the same stipulation.  The data collected specified how many 

directions had passing ability: 0, 1, or 2.  However, passing ability was also collected on 

segments with permitted passing zones that did not have additional lanes but instead had a 

broken centerline.  A single yellow broken line was treated as a two-directional passing zone.  A 

double yellow line with one solid and one broken was treated as a one-directional passing zone.  

A solid double yellow line was treated as a zero-directional passing zone. 

3.7.10 Lighting 

The presence of overhead street lighting was observed for each segment.  This was done 

in Roadview Explorer. The lighting did not need to be present for the majority of the segment 

like the other geometric attributes—one light would suffice.  However, no study segments had 

overhead lighting.  This is most likely due to the rural location of each segment. 

3.7.11 AADT 

AADT data were obtained from UDOT (UDOT 2011).  The data were collected for the 

years 2008 to 2012—the most recent five years of data available at the time of the research.   
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3.7.12 Truck Percentage 

Truck percentage data are divided into single-unit (single) and combination unit (combo).  

The definition for single and combo trucks is found in the Traffic Monitoring Guide from the 

Federal Highway Administration (FHWA) (2013), and is shown in Table 3.3.  The FHWA 

vehicle category classifications and numbers are shown in Table 3.4. 

Table 3.3 HPMS/FHWA Vehicle Classes (FHWA 2013) 

HPMS Summary Table: Vehicle Class Group FHWA 13 Vehicle Category 

Classification Number 

Group 1: Motorcycles (MC) 1 

Group 2: Passenger Vehicles equal to or under 102‖ (PV) 2 

Group 3: Light trucks over 102‖(LT) 3 

Group 4: Buses (BS) 4 

Group 5: Single-unit vehicles (SU) 5, 6, 7 

Group 6: Combination Unit (CU) 8, 9, 10, 11, 12, 13 

 

Table 3.4 FHWA Vehicle Category Classifications (FHWA 2013) 

Code Description 

1 

Motorcycles (Optional): All two- or three-wheeled motorized vehicles. Typical 

vehicles in this category have saddle type seats and are steered by handlebars rather 

than a wheel. This category includes motorcycles, motor scooters, mopeds, motor-

powered bicycles, and three-wheeled motorcycles. This vehicle type may be reported at 

the option of the State, but should not be reported with any other vehicle type. 

2 

Passenger Cars: All sedans, coupes, and station wagons manufactured primarily for 

the purpose of carrying passengers and including those passenger cars pulling 

recreational or other light trailers. Vehicles registered as passenger cars that are 

pickups, panels, vans, etc. (described as vehicle type "3") should be reported as vehicle 

type "3". 

3 

Other Two-Axle, Four-Tire, Single-Unit Vehicles: All two-axle, four-tire vehicles, 

other than passenger cars. Included in this classification are pickups, panels, vans, and 

other vehicles such as campers, motor homes, ambulances, hearses, and carryalls. Other 

two-axle, four-tire single-unit vehicles pulling recreational or other light trailers are 

included in this classification. 

4 

Buses: All vehicles manufactured as traditional passenger-carrying buses with two-

axles, six-tires and three or more axles. This category includes only traditional buses 

(including school buses) functioning as passenger-carrying vehicles. All two-axle, four-

tire minibuses should be classified as other two-axle, four-tire, single-unit vehicles 

(type "3"). Modified buses should be considered as trucks and be appropriately 

classified. 
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Table 3.4 continued 

5 

Two-Axle, Six-Tire, Single-Unit Trucks: All vehicles on a single frame including 

trucks, camping and recreational vehicles, motor homes, etc., having two axles and 

dual rear wheels. 

6 
Three-Axle, Single-Unit Trucks: All vehicles on a single frame including trucks, 

camping and recreational vehicles, motor homes, etc., having three axles. 

7 
Four-or-More Axle, Single-Unit Trucks: All vehicles on a single frame with four or 

more axles. 

8 
Four-or-Less Axle, Single-Trailer Trucks: All vehicles with four or less axles 

consisting of two units, one of which is a tractor or straight truck power-unit. 

9 
Five-Axle, Single-Trailer Trucks: All five-axle vehicles consisting of two units, one 

of which is a tractor or straight truck power-unit. 

10 
Six-or-More Axle, Single-Trailer Trucks: All vehicles with six or more axles 

consisting of two units, one of which is a tractor or straight truck power-unit. 

11 
Five-or-Less Axle, Multi-Trailer Trucks: All vehicles with five or less axles 

consisting of three or more units, one of which is a tractor or straight truck power-unit. 

12 
Six-Axle, Multi-Trailer Trucks: All six-axle vehicles consisting of three or more 

units, one of which is a tractor or straight truck power-unit. 

13 
Seven-or-More Axle, Multi-Trailer Trucks: All vehicles with seven or more axles 

consisting of three or more units, one of which is a tractor or straight truck power-unit. 

 

The vehicle classification data were collected by UDOT at various recording stations 

across the state and then interpolated throughout UDOT’s highway system so that every segment 

has an associated single and combo truck percentage. 

3.8 Crash Data 

As mentioned previously, crash data were obtained from the UDOT Crash Database for 

the years 2008 to 2012 (UDOT 2013).  Once the segments were randomly selected and the curve 

buffers were added, the segment data were cross-referenced with the crash data to extract only 

the crashes that occurred on the segments in the dataset.  

The crash data were tabulated to create totals for the most recent three years (2010-2012) 

and the most recent five years (2008-2012) on each segment.  
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3.9 Data Preparation Summary 

The purpose of data preparation was to randomly select segments that represented a cross 

section of rural two-way two-lane highway curves in Utah.  Facility data pertaining to the 

selected segments were collected to allow subsequent crash prediction modeling.  The 

justification for the specific variables collected comes from the HSM predictive model, which 

outlines the base conditions of any given segment.  Variables required for HSM model 

calibration, along with the additional variables, were used for modeling and further analysis. 
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4.0 METHODOLOGY 

4.1 Overview 

This chapter discusses the process for creating and analyzing the various models that are 

used in this research.  This includes models based on the HSM predictive model, models specific 

to this research for analyzing both curved and tangent segments, and Utah-specific NB models 

for curved segments. 

4.2 HSM Predictive Model 

The HSM crash prediction model incorporates SPFs, CMFs, and a calibration factor.  The 

calibration factor is what makes the model jurisdiction-specific since it compares the predicted 

values to the actual values observed on the selected segments. 

4.2.1 SPF 

The HSM outlines the process for developing an SPF for rural two-lane two-way 

highway segments.  The SPF predictive model that was introduced in Equation 2-1 is repeated in 

this section as Equation 4-1 (AASHTO 2010).  

                                  (4-1) 

where, Nspf  =   predicted total crash frequency for roadway segment base conditions 

 AADT =   average annual daily traffic volume (vehicles per day), and 

 L =   length of roadway segment (miles). 

 

As illustrated in Equation 4-1, the SPF is based on segment length and AADT, that is, 

daily VMT.  This calculation will stay similar from year to year since the only parameter that 

fluctuates is AADT.  The HSM crash prediction model uses this SPF model to show that the 

number of crashes on a given segment is directly proportional to the exposure (AADT multiplied 

by segment length).  The multiplier 365 is included to convert AADT from a daily measurement 

to an annual measurement.  The multiplier 10
-6

 is used to convert the overall units to number of 
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crashes per million VMT.  The full model, including the exponential, is based on data from 

studies performed in the U.S. (AASHTO 2010). 

4.2.2 CMFs 

As illustrated in the SPF model, the only parameters that vary from segment to segment 

are AADT and segment length.  The SPF equation assumes a base condition for each road 

segment.  The base conditions for rural two-lane two-way highways are shown in Table 4.1. 

Table 4.1 Base Conditions for Rural Two-Lane Two-Way Highways 

Lane Width 

Shoulder Width 

Shoulder Type 

Roadside Hazard Rating 

Driveway Density 

Horizontal Curvature 

Vertical Curvature 

Centerline Rumble Strips 

Passing Lanes 

Two-way left-turn lanes 

Lighting 

Automated Speed Enforcement 

Grade Level 

12 feet 

6 feet 

Paved 

3 

5 driveways per mile 

None 

None 

None 

None 

None 

None 

None 

0% 

 

When a segment does not meet one of the 13 base conditions listed in Table 4.1, a CMF 

must be multiplied by the predicted number of crashes calculated by the SPF model.  Doing so 

adjusts the prediction by incorporating more of the actual parameters.  The new prediction model 

is shown as Equation 4-2 (AASHTO 2010). 

                             (4-2) 

where, N =   predicted number of crashes accounting for non-base conditions, 

 Nspf =   number of predicted crashes determined for base conditions, and 

 CMFi =   crash modification factor. 
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Equation 4-2 shows that CMFs directly affect the predicted number of crashes for a given 

segment.  A CMF with a value greater than 1 will increase the predicted number of crashes, 

while a CMF with a value less than 1 will decrease the predicted number of crashes.  

Independent CMFs can be created and multiplied by an SPF.  However, there are 12 CMFs that 

the HSM has identified as the most relevant to crash prediction (shoulder width and type are 

combined into one CMF).  

Deviations from the base conditions assumed in the SPF model are expected on almost all 

rural two-lane two-way highway segments.  One of the frequently unmet base conditions is the 0 

percent grade specification.  Many jurisdictions do not allow roads to be constructed with a 0 

percent grade as drainage can be compromised (AASHTO 2010).  Thus, a CMF will almost 

always be calculated for grade.  The base conditions are not necessarily ideal.  They are a 

starting point for further analysis. 

4.2.3 Calibration 

The HSM predictive model was developed from data sourced from several regions in the 

U.S. However, it is generally used in a local setting.  Overall conditions, such as winter weather 

and driver behavior, can vary greatly from state to state.  For this reason, the HSM predictive 

model incorporates a calibration factor that jurisdictions may employ to adjust the predicted 

value to match actual observed crash rates.  The full predictive model, including calibration, is 

shown in Equation 4-3 (AASHTO 2010): 

                                  (4-3) 

where, Npred =  predicted number of crashes, 

 Nspf =  number of predicted crashes determined for base conditions, 

 C =   calibration factor, and 

 CMFi =   crash modification factor. 

 

The calibration factor is found by dividing the actual number of crashes by the predicted 

number of crashes as shown in Equation 4-4.   
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          (4-4) 

where, C =   calibration factor,  

 Nactual =   actual number of crashes, and 

 Npred =   predicted number of crashes. 

 

Unlike SPFs and CMFs, calibration factors are calculated from an entire set of segments 

rather than from each segment individually.  However, once a single calibration factor has been 

established, it is used for each segment.  A calibration factor greater than 1 indicates that the 

roadway segments within the set experience more crashes, on average, than the roadways that 

were used in developing the SPFs (AASHTO 2010).  Conversely, a factor less than 1 indicates 

fewer crashes, on average, than the roadways used in developing the SPFs. 

4.2.4 HSM Model Summary 

The HSM predictive model uses an SPF calculation to establish a baseline prediction 

based on vehicle exposure.  CMFs are used to account for variations in the prescribed base 

conditions by adjusting the prediction for each segment up or down based on roadway attributes.  

The predicted number of crashes for a set of segments can be pooled and compared to the actual 

number of crashes.  This ratio produces a calibration factor that can be multiplied by the SPFs 

and CMFs to create a full predictive model representative of jurisdiction-specific conditions.  

4.3 Curve and Tangent Combination 

Thus far, this report has focused on the development of SPFs and corresponding 

calibration factors for curved segments on rural two-lane two-way highways in Utah.  Previous 

research (Saito et al. 2011) has been performed for tangent segments on rural two-lane two-way 

highways, and did not include curved segments due to the difficulty in obtaining horizontal 

curvature data.  With the recent acquisition of highway curvature data through the UDOT 

LiDAR project (Ellsworth 2013), this research was able to focus on curved segments of rural 

two-lane two-way highways.   
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Since almost all highways are a mix of curved and tangent segments, it would be useful 

to create a single model to analyze both types.  This section presents the HSM approach for 

incorporating both curved and tangent segments.  It also addresses different methods used for 

parameterizing horizontal curvature including a simple indicator variable for curve or tangent, a 

series of indicator variables for curve class, a continuous variable for curve radius, and a 

continuous variable for the inverse transformation of curve radius. 

4.3.1 HSM Approach 

As described in Chapter 3, the HSM predictive model includes a CMF that specifically 

adjusts the SPF for horizontal alignment variations.  The equation for the CMF is shown in 

Equation 4-5 (AASHTO 2010). 

    
(       ) (

    

 
) (       )

(       )
       (4-5) 

where,  CMF = crash modification factor for horizontal alignment; 

 Lc  = length of curve, mi.; 

 R   =    radius, ft.; and 

 S  =   1 if spiral transition curve is present;  

   0 if spiral transition curve is not present;  

0.5 if a spiral transition curve is present at one but not both ends of the 

horizontal curve. 

 

The horizontal alignment CMF incorporates curve length and radius as well as 

adjustments for spiral transitions.  This research assumed that curves in Utah do not have spiral 

transitions.  This CMF is always greater than 1.0, which is the base value for a tangent segment.  

The CMF is inversely proportional to the curve radius, which means that the CMF approaches 1 

as the radius increases.  Thus, the sharpest curves have the highest CMFs. 

4.3.2 Parameterization of Horizontal Curvature 

Where the HSM incorporates horizontal curvature into a CMF, a Utah-specific model 

would need to incorporate horizontal curvature as a parameter in an NB model.  Several methods 
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were attempted for parameterizing horizontal curvature, including separating curves and tangents 

by a simple indicator variable, representing curve class as a series of indicator variables, using 

curve radius, and using an inverse transformation of curve radius. 

4.3.2.1 Simple Indicator Variable 

The first proposed method uses an indicator variable for horizontal alignment by 

assigning 0 for tangent segments and 1 for curved segments.  It creates a simple method for 

analyzing both curves and tangents with very minimal data collection.  The data requirement is 

the mere identification of horizontal curvature.  This is the simplest model for incorporating 

horizontal curvature into a Utah-specific NB model. 

4.3.2.2 Curve Class as a Series of Indicator Variables 

The second proposed method allows for more detail than the simple indicator variable 

model.  It assigns each curve a classification based on degree of curvature using the HPMS 

definitions introduced in Chapter 3.  The classification breakdown outlined in Table 3.1 is 

reprinted in Table 4.2 for convenience. 

Table 4.2 HPMS Curve Classification Breakdown (FHWA 2014) 

Curve Classification Degrees 

A Under 3.5 degrees (i.e., 0.061 radians) 

B 3.5 - 5.4 degrees (i.e., 0.061 - 0.094 radians) 

C 5.5 - 8.4 degrees (i.e., 0.096 - 0.147 radians) 

D 8.5 - 13.9 degrees (i.e., 0.148 - 0.243 radians) 

E 14.0 - 27.9 degrees (i.e., 0.244 - 0.487 radians) 

F 28 degrees (i.e., 0.489 radians) or more 

 

Since this method involves tangent segments, the definition for curve class A is modified 

to include curves that have curvature greater than 0.0 degrees up to 3.5 degrees so that a new 

tangent classification can be introduced.  This creates a set of seven variables, each one with 

possible values of 1 (if the curve in question falls within the range) and 0 (if the curve falls 

anywhere outside the range).  For example, a curve with a C classification would produce a value 

of 1 for the C class indicator variable, and a 0 for all other indicator variables. 
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Each class is changed from a letter to a number to allow for parameterization.  Tangent 

becomes 0, class A becomes 1, all the way through class F becoming 6.  The modified 

breakdown is shown in Table 4.3.  Each curve class is treated as a separate indicator variable.  

The indicator variable method allows for isolation of specific classifications that may correlate 

better than other classifications. It contrasts with the simple indicator variable method that 

classifies all curves as the same. 

Table 4.3 Modified Curve Classification Breakdown 

Curve Classification Degrees 

0 0.0 degrees (no curvature) 

1 >0.0 - 3.5 degrees (i.e., >0.000 - 0.061 radians) 

2 3.5 - 5.4 degrees (i.e., 0.061 - 0.094 radians) 

3 5.5 - 8.4 degrees (i.e., 0.096 - 0.147 radians) 

4 8.5 - 13.9 degrees (i.e., 0.148 - 0.243 radians) 

5 14.0 - 27.9 degrees (i.e., 0.244 - 0.487 radians) 

6 28 degrees (i.e., 0.489 radians) or more 

 

4.3.2.3 Curve Radius 

The third proposed method uses curve radius rather than a classification derived from 

degree of curvature.  Also, instead of grouping curves into classification bins, this method uses a 

continuous variable.  The challenge comes in assigning a radius to tangent segments.  Since 

radius increases as a curve becomes shallower, the radius of a tangent would theoretically be 

infinite.  Since infinity is impractical from a modeling standpoint, an arbitrarily high radius of 10 

miles is assigned to each tangent segment.  This method requires the radius measurement for 

each curved segment. 

4.3.2.4 Inverse Transformation of Curve Radius 

The fourth proposed method requires a simple inverse transformation of the curve radius 

method.  The idea for this method is that the value of tangent segments should not be arbitrary.  

As mentioned previously, radius increases as a curve becomes shallower so a tangent segment 

would have an infinite radius.  By taking the inverse of the radius, the value for tangent segments 

is 0, with all curves having increasing values as they become sharper.  This method creates a 

better distribution of values to match the HSM model (AASHTO 2010). 
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4.3.3 Curve and Tangent Combination Summary 

This section evaluated several methods for addressing horizontal alignment in a crash 

prediction model.  Included in the evaluation were the method used in the HSM and methods for 

parameterization of horizontal alignment for use in an NB model.  The parameterization methods 

included using an indicator variable, curve class as a series of indicator variables, curve radius, 

and inverse transformation of curve radius.  Each model has strengths and weaknesses.  The 

results of their use will be discussed in Chapter 5. 

4.4 Utah Specific Model 

This section discusses the creation of models to predict crashes on rural two-lane two-

way highways in Utah.  It focuses on the overall development of NB and EB models using all 

independent variables that are statistically significant. 

4.4.1 Negative Binomial Development 

An NB model was developed by using JMP, a statistical software package that is a 

graphical interface for SAS software (SAS 2013).  JMP can create an NB model with any 

number of independent variables and interactions of variables.  It estimates coefficients for each 

variable within a model and calculates the p-value for each.  A p-value is the probability that a 

randomized experiment will lead to a test statistic that is at least as extreme as the one observed 

(Ramsey and Schafer 2002). 

Using the p-values, researchers were able to use a backward stepwise technique for 

identifying significant variables.  A backward stepwise technique allows the model to begin with 

as many variables as are entered.  These input variables are then removed one at a time based on 

their p-value.  The variable with the highest p-value is eliminated because the value indicates 

much less contribution to the integrity of the model.  A new model is then created with the 

remaining variables.  This process is continued until all variables have p-values less than 0.05, 

based on a 95 percent confidence level. This technique allows for every variable to be entered 

and only the relevant ones to remain after the process is completed.  The NB model takes the 

form shown in Equation 4-6 (Ramsey and Schafer 2002).  The equation can be rearranged by 
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exponentiating both sides in order to solve for the number of crashes.  The number of 

independent variables depends on the results of the backward stepwise technique. 

  ( )     ∑     
 
           (4-6) 

where,  N = number of crashes (predicted or observed), 

 β0 = intercept, 

 βi = coefficient for variable xi, 

 xi = independent variable, and 

 n = number of independent variables. 

 

 The input variables for the backward stepwise technique include the same variables that 

were used for the HSM predictive model and also include additional variables that were 

hypothesized to have a potential correlation with crash prediction.  Table 4.4 shows the 

preliminary input variables in alphabetical order.  

Table 4.4 Preliminary Input Variables for NB Model 

AADT 

Analysis Length 

Combo Truck Percentage 

Degree of Curvature 

Driveway Density 

Grade 

Lane Width 

Passing Lane Presence 

Radius 

Rumble Strip Presence 

Shoulder Width 

Single Truck Percentage 

Speed Limit 

Total Truck Percentage 

 

The passing lane presence and rumble strip presence variables were simple indicator 

variables—a value of 1 if the item was present and a value of 0 if it was not.  Speed limit was 

based on posted speed limit for the segment in increments of 5 mph.  The lane width and 

shoulder width variables followed the same rounding convention discussed in previous chapters, 

with lane width rounding to the nearest foot and shoulder width rounding down to the nearest 

multiple of 2 feet.  The AADT and radius variables underwent transformations to create more 

normal distributions and to reduce the differences in variance.   

AADT values ranged from around 300 to over 10,000 vehicles per day (vpd).  The NB 

models were created for both a three-year sample (2010-2012) and a five-year sample (2008-
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2012), so each AADT value was multiplied by the number of days per year (365) and by the 

number of years in the sample (3 or 5, depending on the dataset of the model).  Once the product 

of AADT, days per year, and years of data was calculated—now more appropriately called 

vehicle count—it was determined that a natural log transformation would be the best approach 

for this variable.   

 The radius variable also underwent transformations.  The largest radius in the dataset was 

larger than the smallest radius by three orders of magnitude.  For this reason, it was determined 

that a log transformation would create a distribution closer to a normal distribution.  Similarly, 

the idea of an inverse transformation was proposed based on the success observed in the previous 

chapter.  Ultimately, radius, radius with natural log transformation, and inverse radius were all 

included in the model. 

 Table 4.5 shows the final input variables for the backward stepwise regression technique 

in JMP.  This technique allows each variable to be analyzed individually based on correlation 

and p-value, and the best variable can be chosen out of potentially overlapping or duplicative 

variables. 

Table 4.5 Final Input Variable Selection for NB Model 

Analysis Length 

Combo Truck Percentage 

Degree of Curvature 

Driveway Density 

Grade 

Inverse Radius 

Lane Width 

Passing Lane Presence 

Radius 

Radius with Natural Log Transformation 

Rumble Strip Presence 

Shoulder Width 

Single Truck Percentage 

Speed Limit 

Total Truck Percentage 

Vehicle Count 

 

4.4.2 Empirical Bayes Model 

The EB model is based on the results of a crash prediction model and the actual number 

of crashes.  It uses a dispersion parameter to create a weight to assign to both the prediction and 

the actual number of crashes.  The dispersion parameter is part of the output data on JMP when 

creating a NB model.  The general equation for the EB model is shown in Equation 4-7 (Hauer 

1997). 
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                 (   )                (4-7) 

where,  Nexpected = expected number of crashes determined by the EB method, 

  w = weight (as shown in Equation 4-8), 

  Nspf  = number of predicted crashes (previously determined), and 

  Nobserved = observed number of crashes at a site. 

 

  
 

    (    )
         (4-8) 

where,  k = dispersion parameter. 

Since the EB model uses a combination of predicted and observed, it can more closely 

approximate the number of crashes.  The weight assigned to both the predicted and observed 

values will change depending on the dispersion of the crash data.  The EB model weights 

observational data more when crash data are widely dispersed.  It is especially appropriate for 

before-after studies (Srinivasan et al. 2009). 

4.5 Methodology Summary 

This chapter primarily discussed the NB and EB models that estimate expected crashes 

on a road segment.  The NB model uses a backward stepwise regression technique to isolate only 

the significant variables depending on a chosen confidence level.  The EB model looks at both 

predicted and observed crashes to create an expected value for the number of crashes on a given 

segment.  This is done with a dispersion parameter calculated by JMP when an NB model is 

created.  The dispersion determines the weight given to both the predicted values and the 

observed values.  The next chapter looks at the results of the Utah-specific model, HSM 

predictive model, and curve and tangent combinations.   
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5.0 RESULTS 

5.1 Overview 

This chapter presents the results of the crash prediction modeling efforts.  The modeling 

efforts include calibration of the HSM predictive model, development of a model that 

incorporates both curved and tangent segments, and development of a Utah-specific model.  

First, a summary of data collection efforts is presented.  Then, the HSM predictive model 

calibration factors are discussed followed by a discussion of results from modeling horizontal 

alignment by combining curved segments and tangent segments into a single parameter.  Next, 

the NB regression and EB models are discussed as part of the Utah-specific model development 

for curved segments.  A summary of the data collection efforts and modeling results concludes 

this chapter. 

5.2 Data Collection Efforts 

Gathering sufficient data to develop a comprehensive model proved to be a difficult task.  

The HSM predictive model states that a dataset should have no fewer than 100 total crashes per 

year (AASHTO 2010).  However, when curves were randomly chosen for analysis, there was no 

way of knowing the number of actual crashes on each segment until after extensive analysis.  

This is because the analysis length was based on curve length plus a buffer on both ends of the 

curve.  The calculations for the buffer depended on lane width and speed limit data that needed 

to be gathered.   

Originally, approximately 200 segments were randomly selected for analysis, since the 

previous research by Saito et al. (2011) had 157 segments with an average of 142 crashes per 

year.  However, the segments for that research were significantly longer since they were tangent 

segments divided into homogeneous sections.  It was not uncommon for a segment to span 

several miles.  Longer segments corresponded with an increased number of crashes, thus 

allowing the tangent dataset to achieve the 100 crash per year threshold with fewer segments.  

Curved segments, on the other hand, are significantly shorter on average than tangent segments.  

Since the number of crashes on any given segment is heavily based on vehicle exposure, it 
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makes sense that more curved segments would need to be included in the dataset to reach the 100 

crashes per year threshold.   

For the first dataset, the original group of approximately 200 randomly selected segments 

was combined with two additional groups of randomly selected segments with similar quantities.  

This combined dataset was evaluated to remove any duplicate or overlapping segments before 

any statistical analysis was performed.  In total, the dataset was comprised of 579 segments with 

an average of 112 crashes per year for the three-year sample and 126 crashes per year for the 

five-year sample.  This satisfied the HSM requirement of at least 100 crashes per year.     

Two subsequent datasets were assembled for validation purposes, resulting in three total 

datasets comprised of curved segments only.  Dataset 2 had 566 segments with an average of 109 

crashes per year for the three-year sample and 113 crashes per year for the five-year sample.  

Dataset 3 had 608 segments with an average of 140 crashes per year for the three-year sample 

and 150 crashes per year for the five-year sample.  All three datasets met the HSM requirement 

of at least 100 crashes per year for both the three-year and five-year samples.   

This research was also able to look at a combined dataset of all three samples with 

overlapping and duplicate segments eliminated.  This combined dataset had 1,495 segments with 

an average of 319 crashes per year for the three-year sample and 343 crashes per year for the 

five-year sample. 

5.3 Calibration of the HSM Predictive Model 

The HSM predictive model is based on an SPF, multiple CMFs, and a calibration factor 

as explained in Section 4.1.  The SPF for the base conditions on rural two-lane two-way roads is 

shown in Equation 5-1. 

                                  (5-1) 

where, Nspf  =   predicted total crash frequency for roadway segment base conditions, 

  AADT = average annual daily traffic volume (vehicles per day), and 

 L = length of roadway segment (miles). 
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After calculating the number of predicted crashes with the SPF along with the all of the 

available CMFs outlined in the HSM, the predicted values were compared to the actual values.  

This allowed the calibration factors to be determined for each dataset along with the combined 

dataset.  The calibration factors are shown in Table 5.1.  Equations 5-2 and 5-3 present the HSM 

SPFs for rural two-lane two-way highway segments that have been calibrated for Utah.  Equation 

5-2 is based on the three-year sample (2010-2012) and Equation 5-3 is based on the five-year 

sample (2008-2012). 

Table 5.1 HSM Predictive Model Calibration Factors 

Set 3-year Sample 5-year Sample 

1 1.42 1.58 

2 1.50 1.54 

3 1.53 1.64 

Combined 1.50 1.60 

 

                                         

                      (5-2) 

                                         

                      (5-3) 

where,  Nspf3  = predicted total crash frequency for roadway segment base conditions 

using a three-year sample, 

  Nspf5  = predicted total crash frequency for roadway segment base conditions 

using a five-year sample, 

  AADT = average annual daily traffic volume (vehicles per day),  

  L = length of roadway segment (miles), and  

  CMFi = crash modification factor. 

 

Equations 5-2 and 5-3 have been simplified to Equations 5-4 and 5-5. 

                                           (5-4) 
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                                           (5-5) 

Equations 5-4 and 5-5 represent the combination of an SPF and the calibration factor.  

The CMFs still need to be applied to these equations as prescribed by the HSM predictive model 

for rural two-lane two-way highways.  It is interesting to note that the calibration factor for the 

three-year sample is lower than the calibration factor for the five-year sample.  This implies that 

the overall safety on the sampled highway segments improved in the last three years of the five-

year sample.  With this implication, the tangent segments evaluated in previous research (Saito et 

al. 2011) were used to develop calibration factors with more recent crash data.  Since the 

previous research used a three-year sample, the data used for this research was grouped into three 

separate three-year samples for comparison.  The calibration factors for the tangent segments are 

shown in Table 5.2. 

Table 5.2 Calibration Factors for Tangent Segment Sample 

 
 

It is important to remember that AADT is the only independent variable that changes 

between sample periods, based on the HSM predictive model, since geometric features are 

assumed to be the same.  While AADT has increased on almost all segments since the previous 

research, the actual number of crashes has decreased.  A decreasing calibration factor signifies 

that the actual number of crashes is decreasing, the predicted number of crashes is increasing, or 

both.  This supports the assumption that overall safety has improved not only since the year 

2008, but since at least the year 2005.  The improvements in safety can be seen in both the 

curved segment sample and the tangent segment sample.  This also shows that calibration factors 

need to be updated regularly, as they can change significantly within a few years’ time. 

Sample Period
Predicted 

Crashes

Actual 

Crashes

Calibration 

Factor

2005-2007 368 426 1.16

2008-2010 403 415 1.03

2009-2011 403 374 0.93

2010-2012 422 354 0.84
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5.4 Curve and Tangent Combination 

Four different approaches were attempted to combine segments of different horizontal 

alignments into the same parameter.  These approaches included single indicator variable, curve 

class as a series of indicator variables, curve radius, and inverse transformation of curve radius.  

A method was created for each approach and for each sample period using the backward 

stepwise technique.  The results of each method are presented in this section along with a 

discussion of the next steps in this area of research. 

5.4.1 Single Indicator Variable 

The single indicator variable method assigns 0 for tangent segments and 1 for curved 

segments.  While this is a very simple method with minimal data collection, the results were 

inconclusive.  Since the variable only allowed for two possibilities, all curved segments were 

treated as equal as were all tangent segments.  Any variation in curve radius or degree of 

curvature was ignored by this model.  The parameter estimates are shown in Table 5.3 and Table 

5.4 for the three-year and five-year samples, respectively. 

Table 5.3 Parameter Estimates for Three-year Sample Using Indicator Variable 

 

Term Estimate
Standard 

Error

Wald 

χ
2

Probability 

> χ
2

Lower 

95%

Upper 

95%

Intercept -8.9068 0.8798 102.5 < 0.0001 -10.6311 -7.1825

Analysis Length (mi) 0.6817 0.1113 37.5 < 0.0001 0.4636 0.8998

Total Truck Percentage -0.0165 0.0051 10.3 0.0013 -0.0265 -0.0064

Ln(3 year Vehicle Count) 0.6430 0.0580 123.1 < 0.0001 0.5294 0.7565

Curve Presence [1] -0.4494 0.1594 8.0 0.0048 -0.7618 -0.1370

Dispersion 0.9360 0.1288 52.8 < 0.0001 0.6836 1.1885
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Table 5.4 Parameter Estimates for Five-year Sample Using Single Indicator Variable 

 
 

Table 5.3 and Table 5.4 include the Wald statistic in the fourth column.  The Wald 

statistic is a comparison of the maximum likelihood estimate of the parameter and the proposed 

value (SAS 2013).  The statistic is then compared to a chi-square distribution to produce a p-

value shown in the fifth column.  The variables shown in Table 5.3 and 5.4 are the only variables 

whose p-values were less than 0.05.  Using curve presence as a single indicator variable is shown 

to be significant at a 95 percent confidence level, with a p-value of 0.0002.  Of particular interest 

is the sign for the indicator variable estimate.  The interpretation of this model is that the 

presence of curves reduces the overall number of crashes, which is counterintuitive.  This idea 

will be discussed further in Section 5.4.5.  The single indicator variable method groups all curves 

and tangents into two homogeneous classifications.  It therefore does not account for sharpness 

of each curve and was rejected for this reason. 

5.4.2 Curve Class as a Series of Indicator Variables 

This method involved assigning a classification to each curve based on degree of 

curvature using the HPMS definitions introduced in Chapter 3.  Each classification was treated 

as a separate indicator variable.  This created a set of seven variables, each one with possible 

values of 1 (if the curve in question fell within the range) and 0 (if the curve fell anywhere 

outside the range).  For example, a curve with a C classification produced a value of 1 for the C 

class indicator variable, and a 0 for all other indicator variables.  In the JMP model, the F (or 6) 

classification became the base group.  Hence, only six indicator variables are listed in the output. 

Table 5.5 and Table 5.6 show the parameter estimates for the three-year and five-year samples, 

respectively. 

Term Estimate
Standard 

Error

Wald 

χ
2

Probability 

> χ
2

Lower 

95%

Upper 

95%

Intercept -8.1664 0.7303 125.0 < 0.0001 -9.5978 -6.7350

Analysis Length (mi) 0.6602 0.1033 40.8 < 0.0001 0.4576 0.8627

Total Truck Percentage -0.0169 0.0043 15.8 < 0.0001 -0.0253 -0.0086

Ln(5 year Vehicle Count) 0.6400 0.0483 175.2 < 0.0001 0.5424 0.7348

Curve Presence [1] -0.5229 0.1382 14.3 0.0002 -0.7939 -0.2520

Dispersion 0.8525 0.0937 82.7 < 0.0001 0.6687 1.0362
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Table 5.5 Parameter Estimates for Three-year Sample Using Curve Class 

 
 

Table 5.6 Parameter Estimates for Five-year Sample Using Curve Class 

 
 

The results for this method were inconclusive.  The model rejected each classification 

indicator variable based on p-values greater than 0.05.  Further analysis observed that the 

samples did not contain an equal distribution across classifications.  This has to do with the 

actual distribution of all curves within the state.  There simply are not as many sharp curves as 

there are shallow curves.  For all of these reasons, this model was rejected. 

Term Estimate
Standard 

Error
Wald χ

2
Probability 

> χ
2

Lower 

95%

Upper 

95%

Intercept -0.9858 1.1417 74.6 < 0.0001 -12.0959 -7.6204

Analysis Length (mi) 0.6895 0.1116 38.2 < 0.0001 0.4709 0.9081

Total Truck Percentage -0.0158 0.0052 9.4 0.0022 -0.0260 0.0057

Numeric Class [0] 0.7444 0.8334 0.8 0.3718 -0.8891 2.3779

Numeric Class [1] 0.2163 0.8250 0.1 0.7932 -1.4007 1.8333

Numeric Class [2] 0.3398 0.8295 0.2 0.6820 -1.2859 1.9656

Numeric Class [3] 0.3386 0.8368 0.2 0.6857 -1.3014 1.9786

Numeric Class [4] 0.6686 0.8482 0.6 0.4306 -0.9939 2.3311

Numeric Class [5] 0.3046 0.9447 0.1 0.7471 -1.5469 2.1562

ln(3 year Vehicle Count) 0.6551 0.0587 124.7 < 0.0001 0.5402 0.7701

Dispersion 0.9260 0.1276 52.7 < 0.0001 0.6759 1.1761

Term Estimate
Standard 

Error
Wald χ

2
Probability 

> χ
2

Lower 

95%

Upper 

95%

Intercept -9.7737 1.0456 87.4 < 0.0001 -11.8229 -7.7244

Analysis Length (mi) 0.6668 0.1036 41.4 < 0.0001 0.4638 0.8699

Total Truck Percentage -0.0169 0.0043 15.5 < 0.0001 -0.0253 -0.0085

Numeric Class [0] 1.4691 0.8189 3.2 0.0728 -0.1359 3.0742

Numeric Class [1] 0.8807 0.8115 1.2 0.2778 -0.7097 2.4712

Numeric Class [2] 0.9474 0.8150 1.4 0.2451 -0.6500 2.5447

Numeric Class [3] 1.0711 0.8190 1.7 0.1909 -0.5341 2.6763

Numeric Class [4] 1.1930 0.8294 2.1 0.1503 -0.4326 2.8185

Numeric Class [5] 1.0503 0.8895 1.4 0.2377 -0.6931 2.7937

ln(5 year Vehicle Count) 0.6488 0.0489 176.1 < 0.0001 0.5530 0.7446

Dispersion 0.8443 0.0929 82.6 < 0.0001 0.6622 1.0264
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5.4.3 Curve Radius 

The main advantage of the curve radius method seemed to be the use of a continuous 

variable rather than an indicator or a grouping.  The challenge, however, came from assigning a 

radius value to each tangent segment.  Since radius increases as a curve becomes shallower, the 

radius of a tangent would theoretically be infinite.  Infinity is impractical from a modeling 

standpoint, so an arbitrarily high radius of 10 miles was assigned to each tangent segment.  Table 

5.7 and Table 5.8 show the parameter estimates for the three-year and five-year samples, 

respectively. 

The variable for curve radius had a very low p-value in each sample, signifying strong 

evidence of a relation to crash prediction.  The estimate for the radius variable can be interpreted 

as an increase in crashes as the radius increases.  Similar to the single indicator variable method 

results, this is counterintuitive as a sharper curve would be expected to have more crashes than a 

shallow curve or even a tangent.  This will be discussed further in Section 5.4.5. 

Table 5.7 Parameter Estimates for Three-year Sample Using Curve Radius 

 

Table 5.8 Parameter Estimates for Five-year Sample Using Curve Radius 

 

Term Estimate
Standard 

Error
Wald χ

2
Probability 

> χ
2

Lower 

95%

Upper 

95%

Intercept -9.3748 0.8374 125.3 < 0.0001 -11.0160 -7.7336

Analysis Length (mi) 0.6879 0.1118 37.8 < 0.0001 0.4687 0.9070

Total Truck Percentage -0.0164 0.0580 10.2 0.0014 -0.0264 -0.0063

Ln(3 year Vehicle Count) 0.6429 0.0580 122.7 < 0.0001 0.5291 0.7567

Radius10 (mi) 0.0453 0.0167 7.4 0.0066 0.0126 0.0780

Dispersion 0.9374 0.1290 52.8 < 0.0001 0.6846 1.1902

Term Estimate
Standard 

Error
Wald χ

2
Probability 

> χ
2

Lower 

95%

Upper 

95%

Intercept -8.7093 0.6946 157.2 < 0.0001 -10.0708 -7.3479

Analysis Length (mi) 0.6672 0.1039 41.2 < 0.0001 0.4635 0.8709

Total Truck Percentage -0.0168 0.0043 15.6 < 0.0001 -0.0252 -0.0085

Ln(5 year Vehicle Count) 0.6397 0.0484 174.5 < 0.0001 0.5448 0.7346

Radius10 (mi) 0.0528 0.0144 13.4 0.0003 0.0245 0.0811

Dispersion 0.8542 0.0939 82.8 < 0.0001 0.6902 1.0383
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Assigning an arbitrary radius of 10 miles to each tangent segment resulted in a wide 

range, with all tangents at the extreme upper end and all curves at the lower end.  A value needed 

to be identified as a dividing point, with all segments with radii greater than the dividing point 

classified as tangents and assigned the value of the dividing point.  A one-mile radius was 

preliminarily discussed as a possibility for such a dividing point.  However, since attempting to 

undertake the task of defining what is and isn’t a curve will require significantly more research, 

it was deemed beyond the scope of this research. 

5.4.4 Inverse Transformation of Curve Radius 

This method requires a simple inverse transformation of the curve radius method.  The 

impetus for this method was difficulty in assigning an arbitrary radius to tangent segments.  

Taking the inverse of the radius results, the value for tangent segments became 0, with all curves 

having increasing values as they became sharper. This model was the easiest to conceptualize: 

tangent segments have a value of 0, shallow curves have values close to 0, and as the curves 

become sharper, the value increases.  Table 5.9 and Table 5.10 show the parameter estimates for 

the three-year and five-year samples, respectively.  Unfortunately, the results were inconclusive 

as the p-value for the inverse radius variable was very high in both the three-year and five-year 

samples. 

Table 5.9 Parameter Estimates for Three-year Sample Using Inverse Curve Radius 

 
 

Term Estimate
Standard 

Error
Wald χ

2
Probability 

> χ
2

Lower 

95%

Upper 

95%

Intercept -9.7996 0.8376 136.9 < 0.0001 -11.4412 -8.1580

Analysis Length (mi) 0.8769 0.1018 47.3 < 0.0001 0.6775 1.0764

Total Truck Percentage -0.0137 0.0051 7.2 0.0073 -0.0238 -0.0037

Ln(3 year Vehicle Count) 0.6725 0.0577 135.9 < 0.0001 0.5594 0.7855

Inverse Radius (mi) -0.0022 0.0110 0.0 0.8385 -0.0238 0.0193

Dispersion 0.9681 0.1314 54.3 < 0.0001 0.7105 1.2256
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Table 5.10 Parameter Estimates for Five-year Sample Using Inverse Curve Radius 

 
 

5.4.5 Discussion 

One of the observations during this process was that most of the tangent segments had 

significantly longer analysis lengths than the curved segments.  This makes intuitive sense 

because segments were defined by homogeneous roadway attributes and tangents can be 

homogeneous for many miles, whereas curves are usually much less so.  Since segment length is 

a major factor in vehicle exposure, which in turn is a major factor in the number of crashes on a 

segment, it is possible that methods placing too much weight on segment length would assign a 

high number of crashes to longer segments.  While longer segments should have a higher number 

of crashes due to higher exposure values, if tangent segments are longer than curved segments on 

average, the model may falsely assume that tangency is a strong predictor of a high number of 

crashes.   

Due to these observations, the interaction of curve presence and segment length was 

tested to see if the disparity in segment lengths was affecting the output of the different curvature 

approaches.  The results the analyses are shown in Table 5.11 and Table 5.12. 

Term Estimate
Standard 

Error
Wald χ

2
Probability 

> χ
2

Lower 

95%

Upper 

95%

Intercept -9.1010 0.7015 168.3 < 0.0001 -10.4760 -7.7260

Analysis Length (mi) 0.8978 0.0970 85.6 < 0.0001 0.7076 1.0879

Total Truck Percentage -0.0136 0.0042 10.5 0.0012 -0.0218 -0.0058

Inverse Radius (mi) -0.0085 0.0102 0.7 0.4049 -0.0285 0.0115

Ln(5 year Vehicle Count) 0.6675 0.0486 188.5 < 0.0001 0.5722 0.7627

Dispersion 0.8873 0.0963 84.8 < 0.0001 0.6984 1.0761
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Table 5.11 Interaction of Curve Presence and Segment Length for Three-year Sample 

 
 

Table 5.12 Interaction of Curve Presence and Segment Length for Three-year Sample 

 
 

The p-value for the interaction term is very low for both the three- and five-year samples.  

This means that there is strong evidence of a relationship between the analysis length and the 

presence of a curve.  In other words, the curved and tangent samples used in this analysis should 

not be combined into a single model due to the disparity in average segment lengths.  Future 

research should attempt to set limits on segment lengths, or at least attempt to have samples of 

tangents and curves that have similar average lengths.  

The idea of a combining curves and tangents in the same model should receive further 

analysis and study.  Specifically, a definition for what constitutes a curved segment should be 

defined based on curve radius and segment length.  Using curve radius as a continuous variable 

Term Estimate
Standard 

Error
Wald χ

2
Probability 

> χ
2

Lower 

95%

Upper 

95%

Intercept -8.6258 0.8768 96.8 <.0001 -10.3443 -6.9072

Analysis Length (mi) 0.6054 0.1046 33.5 <.0001 0.4003 0.8104

Total Truck Percentage -0.0174 0.0051 11.9 0.0006 -0.0274 -0.0075

ln_3yr_Veh_count 0.6313 0.0576 120.3 <.0001 0.5185 0.7441

Curve Presence[1] -0.9524 0.2180 19.1 <.0001 -1.3796 -0.5251

Analysis Length (mi) 

*Curve Presence[1]
1.8256 0.5568 10.8 0.0010 0.7344 2.9168

Dispersion 0.8835 0.1247 50.2 <.0001 0.6392 1.1279

Term Estimate
Standard 

Error
Wald χ

2
Probability 

> χ
2

Lower 

95%

Upper 

95%

Intercept -7.8338 0.7260 116.4 <.0001 -9.2567 -6.4110

Analysis Length (mi) 0.5693 0.0956 35.4 <.0001 0.3819 0.7568

Total Truck Percentage -0.0178 0.0042 17.9 <.0001 -0.0260 -0.0095

ln_5yr_Veh_count 0.6252 0.0478 171.1 <.0001 0.5315 0.7189

Curve Presence[1] -1.0243 0.1870 30.0 <.0001 -1.3909 -0.6578

Analysis Length (mi) 

*Curve Presence[1]
1.7931 0.4734 14.3 0.0002 0.8653 2.7208

Dispersion 0.8016 0.0907 78.1 <.0001 0.6238 0.9793
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that includes both curved and tangent segments seems to be the most promising approach for 

incorporating horizontal alignment.  Since this research is focused on curved segments, these 

ideas did not receive further attention.  The modeling continued only for curved segments. 

5.5 Utah Specific Model for Curved Segments 

This section addresses the development of a crash prediction model specifically for rural 

two-lane two-way highways within the state of Utah.  The results of the NB and EB models are 

discussed and final models are presented. 

5.5.1 Negative Binomial Model 

An NB model was developed using JMP software.  JMP can create an NB model with 

any number independent variables and interactions of variables.  This research was able to use a 

backward stepwise technique to identify significant variables.  This technique involves adding as 

many variables as are available and then removing the variables one at a time based on their p-

value.  The variable with the highest p-value was eliminated and a new model was created for the 

remaining variables.  This process was continued until all variables had p-values less than 0.05, 

based on a 95 percent confidence interval.  The variables that remained after the backward 

stepwise technique was performed were segment length, AADT, total truck percentage, and 

curve radius.  This was the case for both the three-year and five-year samples.   

The model was run on the first dataset and the other two datasets were used for validation 

purposes.  When the model used data from the second set for the validation comparison, it 

overpredicted the number of crashes by about 5.5 percent for the three-year sample and 13.8 

percent for the five-year sample.  The third dataset underpredicted the number of crashes by 

about 6.7 percent for the three-year sample and 3.7 percent for five-year sample when it was 

used for the validation comparison.   

A chi-square test for goodness of fit between the actual and estimated crash frequency 

distributions was performed on the second and third datasets for both the three-year and five-year 

samples.  The estimated crash frequency distribution was determined using the histogram 
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module of the Data Analysis feature of Microsoft Excel.  This module rounds segment crash 

numbers down to the nearest whole number. 

The results of the chi-square test for these datasets are presented in Appendix A.  The 

critical values for the chi-square distribution for the second dataset were 7.815 at a 95 percent 

confidence level and with 3 degrees of freedom for the three-year sample and 11.07 at a 95 

percent confidence level and 5 degrees of freedom for the five-year sample.  This chi-square test 

did not assume any mathematical distribution, that is, no parameter was used.  Hence, the degree 

of freedom was the number of cells used minus 1.  The chi-square statistics for the three- and 

five-year samples were 219.156 and 257.697, respectively.  Both of these values were greater 

than the critical value for each sample, indicating no evidence that the second dataset’s estimated 

crash distribution approximated the actual crash distribution. 

For the third dataset the critical value was found to be 9.488 at a 95 percent confidence 

level and 4 degrees of freedom for the three-year sample and 14.07 at a 95 percent confidence 

level and 7 degrees of freedom for the five-year sample.  The chi-square statistics for the three- 

and five-year samples were 72.629 and 135.897, respectively.  Similar to the second dataset, 

these values were much greater than the critical values, indicating no evidence that the third 

dataset’s crash distribution approximated the actual crash distribution.   

With this information, researchers decided to use the combined dataset for the NB model.  

As shown in Figure 5.1, the randomly selected study segments are distributed across the state.  

The inherent problem with a single dataset is lack of a separate dataset for validation.  For this 

reason, the combined dataset was randomly divided into a model set and a validation set, with 75 

percent of the segments assigned to create the model and 25 percent of the segments assigned to 

validate it.  The NB model takes the form shown in Equation 5-6 (Ramsey and Schafer 2002). 

  ( )     ∑     
 
           (5-6) 

where,  N = number of crashes (predicted or observed), 

 β0 = intercept, 

 βi = coefficient for variable xi, 
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 xi = independent variable, and 

 n = number of independent variables. 

 

 

Figure 5.1 Combined Dataset of Curved Segments 
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This is rearranged and shown in Equation 5-7, isolating the predicted number of crashes 

on one side of the equation.  

          ∑      
 
           (5-7) 

The final three NB regression outputs from JMP using the backward stepwise technique 

are shown in Table 5.13, Table 5.14, and Table 5.15 for the three-year sample.  Table 5.16, Table 

5.17, and Table 5.18 show the outputs for the five-year sample. 

Table 5.13 Third-from-Final Parameter Estimates for Three-year Sample 

 
 

Table 5.14 Second-from-Final Parameter Estimates for Three-year Sample 

 
 

Term Estimate
Standard 

Error
Wald χ

2
Probability 

> χ
2

Lower 

95%

Upper 

95%

Intercept -11.9486 0.8480 198.5 <.0001 -13.6106 -10.2865

Grade 0.0236 0.0201 1.4 0.24 -0.0158 0.0629

Rounded Shoulder Width -0.0201 0.0223 0.8 0.3675 -0.0638 0.0236

Analysis Length (mi) 2.5030 0.4101 37.2 <.0001 1.6992 3.3069

ln 3yr Veh Count 0.9009 0.0518 302.4 <.0001 0.7994 1.0025

Total Truck % -0.0120 0.0046 6.6 0.0099 -0.0211 -0.0029

Log Radius -0.2105 0.0657 10.3 0.0014 -0.3393 -0.0817

Dispersion 0.641965 0.105336 37.142 <.0001 0.435509 0.84842

Term Estimate
Standard 

Error
Wald χ

2
Probability 

> χ
2

Lower 

95%

Upper 

95%

Intercept -11.8085 0.8330 201.0 <.0001 -13.4411 -10.1759

Grade 0.0230 0.0201 1.3 0.25 -0.0165 0.0624

Analysis Length (mi) 2.4845 0.4104 36.7 <.0001 1.6802 3.2888

ln 3yr Veh Count 0.8867 0.0493 323.9 <.0001 0.7902 0.9833

Total Truck % -0.0120 0.0047 6.6 0.0101 -0.0211 -0.0028

Log Radius -0.2092 0.0658 10.1 0.0015 -0.3381 -0.0802

Dispersion 0.6472 0.1056 37.5 <.0001 0.4402 0.8542
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Table 5.15 Final Parameter Estimates for Three-year Sample 

 

Table 5.16 Third-from-Final Parameter Estimates for Five-year Sample 

 
 

Table 5.17 Second-from-Final Parameter Estimates for Five-year Sample 

 
 

Term Estimate
Standard 

Error
Wald χ

2
Probability 

> χ
2

Lower 

95%

Upper 

95%

Intercept -11.5570 0.8018 207.8 <.0001 -13.1284 -9.9855

Analysis Length (mi) 2.4465 0.4089 35.8 <.0001 1.6450 3.2480

ln 3yr Veh Count 0.8833 0.0491 323.0 <.0001 0.7870 0.9796

Total Truck % -0.0127 0.0046 7.6 0.0059 -0.0218 -0.0037

Log Radius -0.2236 0.0647 11.9 0.0006 -0.3505 -0.0968

Dispersion 0.6491 0.1058 37.7 <.0001 0.4418 0.8564

Term Estimate
Standard 

Error
Wald χ

2
Probability 

> χ
2

Lower 

95%

Upper 

95%

Intercept -12.2296 0.8091 228.5 <.0001 -13.8153 -10.6439

Rounded Shoulder Width -0.0242 0.0192 1.6 0.2060 -0.0618 0.0133

Rounded Lane Width 0.0963 0.0437 4.8 0.0277 0.0106 0.1820

Analysis Length (mi) 2.5204 0.3427 54.1 <.0001 1.8487 3.1920

ln 5yr Veh Count 0.8570 0.0431 396.2 <.0001 0.7726 0.9413

Total Truck % -0.0146 0.0038 14.7 0.0001 -0.0220 -0.0071

Log Radius -0.2061 0.0532 15.0 0.0001 -0.3105 -0.1018

Dispersion 0.554861 0.072403 58.72943 <.0001 0.412953 0.696768

Term Estimate
Standard 

Error
Wald χ

2
Probability 

> χ
2

Lower 

95%

Upper 

95%

Intercept -11.9591 0.7800 235.1 <.0001 -13.4878 -10.4303

Rounded Lane Width 0.0848 0.0430 3.9 0.0485 0.0006 0.1690

Analysis Length (mi) 2.5048 0.3440 53.0 <.0001 1.8306 3.1790

ln 5yr Veh Count 0.8425 0.0415 413.0 <.0001 0.7613 0.9238

Total Truck % -0.0147 0.0038 14.8 0.0001 -0.0222 -0.0072

Log Radius -0.2040 0.0533 14.6 0.0001 -0.3085 -0.0995

Dispersion 0.5620 0.0727 59.8 <.0001 0.4196 0.7044
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Table 5.18 Final Parameter Estimates for Five-year Sample 

 
 

A Bayesian Information Criterion (BIC) was given for each model in the JMP output.  

BIC is a model selection statistic that measures the lack of fit of a model and adds a penalty for it 

(Ramsey and Schafer 2002).  When multiple models are available, the model with the smallest 

BIC is chosen.  BIC is determined from Equation 5-8 (Ramsey and Schafer 2002). 

         (   )     ln(n)       (5-8) 

where,  BIC = Bayesian information criterion, 

  n = number of observations, 

  RSS = sum of squared residuals, and 

  p = number of independent variables. 

The BIC for each of the final three models for both the three-year and five-year samples 

are presented in Table 5.19. 

Table 5.19 BIC Comparison 

 
 

The final outputs for both the three-year and five-year samples have the lowest BIC, in 

addition to having variables that are significant at a 95 percent confidence level.  Models based 

Term Estimate
Standard 

Error
Wald χ

2
Probability 

> χ
2

Lower 

95%

Upper 

95%

Intercept -11.2040 0.6794 271.9 <.0001 -12.5357 -9.8723

Analysis Length (mi) 2.5753 0.3466 55.2 <.0001 1.8960 3.2545

ln 5yr Veh Count 0.8606 0.0409 443.7 <.0001 0.7805 0.9407

Total Truck % -0.0148 0.0038 15.0 0.0001 -0.0223 -0.0073

Log Radius -0.2082 0.0534 15.2 <.0001 -0.3129 -0.1034

Dispersion 0.5755 0.0734 61.4 <.0001 0.4316 0.7195

Output Three-year Sample Five-year Sample

Third-from-Final 2129.8 2818.1

Second-from-Final 2123.6 2812.7

Final 2117.9 2809.5
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on the final output of the backward stepwise technique are represented in Equations 5-9 and 5-10 

for the three-year and five-year samples, respectively. 

 N3-year  =  exp[-11.5570 + (2.4465)(L) + (0.8833)(ln(VC))    (5-9) 

                   – (0.0127)(TT) – (0.2236)(ln(R))] 

 N5-year  =  exp[-11.2040 + (2.5757)(L) + (0.8606)(ln(VC))    (5-10) 

                            – (0.0148)(TT) – (0.2082)(ln(R))] 

where,  L = length, mi; 

 VC = vehicle count = (AADT)(365)(number of years in sample); 

 TT = total truck percentage, percent; and 

 R = radius, ft. 

 

Simplifying the logarithms and coefficients yields Equations 5-11 and 5-12 for the three-

year and five-year samples, respectively. 

 N3-year  =  483.8542 * AADT0.8833 * R-0.2236 * exp[-11.5570    (5-11) 

                 + (2.4465)(L) – (0.0127)(TT)]  

 N5-year  =  640.6824 * AADT0.8606 * R-0.2082 * exp[-11.2040    (5-12) 

                   + (2.5757)(L) – (0.0148)(TT)] 

 

Unlike the HSM predictive model, these models are complete and do not rely on CMFs 

or any other modification to create a full model.  The plots of actual total crashes versus 

predicted total crashes are shown in Figure 5.2 and Figure 5.3 for three-year and five-year 

samples, respectively. 

The sign for each coefficient shows the general effect of each variable.  A positive 

coefficient means that the predicted number of crashes will increase as the value of the variable 

increases.  A negative coefficient signifies a reduction in the predicted number of crashes as the 

value of the variable increases.  For example, the predicted number of crashes increases as the 

AADT and segment length increases.  This result is expected—more exposure should equate to a 
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higher crash frequency.  The predicted number of crashes decreases as the curve radius increases 

(becomes shallower).  This is also expected as sharper curves are perceived as more dangerous.   

The predicted number of crashes decreases as the total truck percentage increases, which 

is the same result observed in the previous study performed on tangent segments of rural two-

lane two-way highways in Utah (Saito et al. 2011).  This could be explained by the fact that truck 

drivers receive training beyond the average automobile driver and generally have significantly 

more experience behind the wheel of a vehicle.  The increased training and experience of 

professional truck drivers equate to lower crash frequencies on highway segments with increased 

truck traffic.   

After the model development, both models were used on the validation dataset—the 25 

percent of segments that were set aside from the combined dataset.  A chi-square test for 

goodness of fit was performed on the validation dataset for both the three-year and five-year 

samples.  The results of the chi-square for the validation dataset are found in Appendix A. The 

critical values for the chi-square distribution were 7.815 at a 95 percent confidence level and 3 

degrees of freedom for the three-year dataset and 11.07 at a 95 percent confidence level with 5 

degrees of freedom for the five-year dataset, respectively.  The chi-square statistic was 1.610 for 

the three-year sample and 10.993 for the five-year sample.  Both of these values were less than 

the critical values, indicating that the estimated crash distribution approximated the actual crash 

distribution. 

The actual numbers of crashes in the three- and five-year samples of the validation 

dataset were 204 and 396, respectively.  The model predicted 269 crashes for the three-year 

sample—an overprediction of 32 percent.  Also, the model predicted 470 crashes for the five-

year sample—an overprediction of 19 percent.  Since the values for actual number of crashes are, 

in fact, actual data, these values show the reality of this type of modeling.  Especially when the 

predictions and the actual observed data do not always match, real conditions cannot be ignored.  
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Figure 5.2 Actual vs. Predicted Three-Year Total Crashes 

 

 

Figure 5.3 Actual vs. Predicted Five-Year Total Crashes 
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5.5.2 Empirical Bayes Model 

The EB model was used to estimate the total number of crashes based on predicted and 

actual values.  It uses a dispersion parameter to weight the predicted values.  If the predicted 

values are over-dispersed, the model gives more weight to the actual number of crashes in the 

calculations.  The dispersion parameters for the three- and five-year samples were found to be 

0.6491 and 0.5755.  This means that the three-year sample data were more dispersed than the 

five-year sample data.  The actual weights for the EB model vary for each segment.  The only 

values that remain constant for each segment are the dispersion parameters.  

The benefit of the EB model is that it more closely approximates the actual number of 

crashes compared to the NB model because it incorporates the actual number of crashes.  For this 

reason, the output of the EB model is called the ―expected‖ number of crashes rather than the 

―predicted‖ number.  The EB model might be more appropriately considered a weighted average 

of the predicted and actual number of crashes.  For example, the combined total of expected 

crashes on the validation dataset using the EB model was 235 for the three-year sample and 420 

for the five-year sample.  These numbers fall between the actual and predicted values for the 

validation dataset – 204 and 269 for the three-year sample and 396 and 470 for the five-year 

sample, respectively.  While the EB model should only be used on a segment-by-segment basis, 

these total values illustrate its benefits for more closely approximating the expected number of 

crashes based on actual and predicted values. 

5.6 Summary of Results 

This chapter discussed the results of the three different modeling procedures: HSM 

predictive model, curve and tangent combination, and the Utah-specific model.  The calibration 

factor for the HSM predictive model was found to be 1.50 for the three-year sample of the 

combined dataset, and 1.60 for the five-year sample of the combined dataset.  These values were 

calculated from the SPF for base conditions plus all applicable CMFs.  These CMFs included 

lane width, shoulder width, horizontal alignment, grade, driveway density, rumble strip presence, 

passing lane presence, and two-way left-turn lane presence.  Decreasing calibration factors for 
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the three- and five-year combined segment samples and for tangent segments over an eight-year 

period provide evidence of improved safety on rural two-lane two-way highways in Utah.    

The curve and tangent combination attempt was partially successful in identifying a 

suitable parameter for variations in horizontal alignment.  The simple indicator variable for curve 

presence was statistically significant at a 95 percent confidence level.  However, this approach 

ignored all variations within the set of curved segments.  The use of curve radius as a continuous 

variable was also statistically significant at a 95 percent confidence level.  However, this 

approach assigned an arbitrary value of 10 miles for curve radius to all tangent segments.  The 

most important observation was the result of testing the interaction between curve presence and 

segment length.  The interaction showed strong evidence of a relationship between curve 

presence and segment length, signifying that the samples used in the combined models needed to 

have similar average segment lengths.  The widely differing average segment lengths in the 

samples used for this research prevented the successful combination of curved and tangent 

segments into one model.  Further research is required to identify the dividing point between a 

curve and a tangent based on curve radius.   

The subsection describing the Utah-specific models outlined the procedure for identifying 

significant variables within an NB model.  A backward stepwise technique was used to remove 

insignificant variables.  Originally the models were created from the first dataset and validated 

by the second and third datasets.  For the second dataset, the model overpredicted the number of 

crashes by about 5.5 percent for the three-year sample and 13.8 percent for the five-year sample.  

For the third dataset, the model underpredicted the number of crashes by about 6.7 percent for 

the three-year sample and 3.7 percent for five-year sample.  All three datasets were combined 

into one dataset and 75 percent of the segments were randomly selected to make a new model.  

The remaining 25 percent were used to validate the new combined model.  The model created 

from 75 percent of the segments overpredicted the number of crashes for the validation dataset 

by 32 percent for the three-year sample and 19 percent for the five-year sample.   

After creation of the models, only four significant variables remained at a 95 percent 

confidence level: AADT (modeled as vehicle count, which was the product of AADT, days per 
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year, and years in sample), segment length, curve radius, and total truck percentage.  The four 

variables were significant in both the three-year model and the five-year model.   

The Utah-specific NB crash prediction models can benefit from the application of the EB 

model.  The EB model is used to better approximate the number of expected crashes.  It is 

essentially a weighted average between the predicted and actual numbers of crashes, using the 

dispersion factor to determine the weight.  Thus, the expected number of crashes from the EB 

model is closer to the actual number of crashes than the predicted number of crashes from the 

NB model.  A main benefit of the EB model is that it automatically corrects for RTM bias.  The 

EB model is appropriate for site-specific evaluation; thus EB model results for a combined 

dataset are not shown.   

The main observation of the results is the importance of the four variables identified by 

the Utah-specific crash prediction models.  AADT and segment length were always significantly 

associated with crash frequencies.  More exposure equates to higher crash frequencies.  Total 

truck percentage was found to be a significant variable and an increase in truck traffic is 

associated with lower crash frequency, most likely due to the increased training and experience 

of professional truck drivers.  Radius was indeed significantly associated with crash frequency.  

Smaller radii—sharper curves—are associated with higher crash frequency.
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6.0 CONCLUSION 

6.1 Overview 

The purpose of this research was to use historical data to develop crash prediction models 

for curved segments of rural two-lane two-way highways in Utah.  This report presents the 

methodology for developing crash prediction models and gives results of the models’ accuracy.  

The research was accomplished by calibrating the HSM crash prediction model as well as by 

creating Utah-specific models.  The crash data came from 2008-2012 datasets, grouped into a 

three-year sample from 2010-2012 and a five-year sample from 2008-2012.  The HSM predictive 

model calibration included use of appropriate CMFs as described in the HSM (AASHTO 2010).  

The Utah-specific models were developed using an NB regression.  An EB model was also used 

to compare the number of crashes predicted by the NB model with the actual number of crashes 

through weighted average equations.   

The main finding of this research is that both the HSM and Utah-specific crash prediction 

models can incorporate highway curvature as a statistically significant variable.  Out of a large 

list of possible variables, the Utah-specific models resulted in only four statistically significant 

variables at a 95 percent confidence level.  This simplified crash prediction model will be easier 

to reproduce due to the small amount of data collection required for its use.  

This chapter presents the outcomes of the research, recommendations for the use of 

models, and further research needs. 

6.2 Outcomes 

The calibration of the HSM predictive model for curved segments on rural two-lane two-

way roads in Utah was completed for the three-year sample and the five-year sample for 

comparison.  The combined dataset contained 1,495 curved segments.  The three- and five year 

samples produced calibration factors of 1.50 and 1.60, respectively, which means that the HSM 

model underpredicts the number of crashes on curved rural two-lane two way roads in Utah by 

50-60 percent as compared to the national dataset used as the basis for the HSM SPF.   
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The Utah-specific models were developed using NB models.  A backward stepwise 

technique identified only four variables as statistically significant at a 95 percent confidence 

level.  Those four variables were AADT, segment length, curve radius, and total truck 

percentage.   

The HSM predictive model uses up to 12 CMF variables in addition to AADT and 

segment length.  By comparison, the Utah-specific models only require four variables.  With the 

reduced data collection demands, these Utah-specific models may be better suited for crash 

prediction than the HSM predictive model.   

This research also attempted to combine curved and tangent segments into one parameter.  

This attempt proved inconclusive as some of the models did not pass standard statistical tests for 

significance for tangent and curve section distinction since the coefficients of the possible 

variables were not significant at a 95 percent confidence level.  The models that did have strong 

evidence of significance were not evaluated any further as they were either too general or needed 

further definition.  Since the purpose of this research was to create crash prediction models for 

curved segments, the attempt to incorporate tangent segments did not receive any further 

attention.   

An EB model was also used to determine an expected number of crashes.  The EB model 

relies on a combination of predicted values and actual values, which are weighted and added 

together to provide the overall result.  The weight is dependent on a dispersion parameter 

calculated during model development.  EB models are meant to be site-specific.  Therefore, 

results from the combined datasets were not reported. 

6.3 Recommended Models 

The HSM calibration factors were found to be 1.50 and 1.60 for the three- and five-year 

samples, respectively.  The Utah-specific crash prediction models can also be used as alternative 

models for curved segments of rural two-lane two-way highways.  These are shown in Equations 

5-11 and 5-12, which are repeated here in Equations 6-1 and 6-2, respectively. 
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 N3-year  =  483.8542 * AADT0.8833 * R-0.2236 * exp[-11.5570    (6-1) 

                 + (2.4465)(L) – (0.0127)(TT)]  

 N5-year  =  640.6824 * AADT0.8606 * R-0.2082 * exp[-11.2040    (6-2) 

                   + (2.5757)(L) – (0.0148)(TT)] 

where,  AADT = average annual daily traffic, 

  R = radius (ft.),   

  L = length (mi), and  

 TT = total truck percentage (percent). 

 

The Utah-specific models use far fewer variables than the HSM models and were 

developed from segments in Utah rather than across the United States.  Simplicity, however, has 

limitations: the Utah-specific models can only evaluate the effects of the four variables in the 

models—specifically, improvements on horizontal curvature.  The HSM models require more 

variables, hence are able to evaluate the effects of as many variables as are included in the 

CMFs. 

The EB models discussed in this report should be used in conjunction with the Utah-

specific crash prediction NB models to correct for RTM bias.  Since the EB models use a 

weighted average of actual and predicted crashes, they are appropriate for before-after analysis 

where the actual number of crashes is known (Srinivasan et al. 2009).  

6.4 Future Research Needs 

This research was performed for curved segments of rural two-lane two-way highways in 

Utah.  Research has been previously performed on tangent segments of rural two-lane two-way 

highways in Utah.  This research attempted to find a suitable parameter for combining curved 

and tangent segments into the same model, but no convincing models resulted.  Future research 

should give attention to the possibility of defining a model capable of combining curved and 

tangent segments. 
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One hypothesis is that a mixed dataset of curved and tangent segments should have 

similar average segment lengths.  Since segment length is a key component of vehicle exposure, 

which in turn is a key variable in crash prediction modeling, longer average lengths for tangent 

segments may be falsely correlated with higher crash rates.   

More recent data would help further research on this topic.  A comparison of historical 

predictions versus current crash data would help in the development of more accurate crash 

prediction models.  Also, interactions between variables were not considered in this research—

each variable was considered independently from each other.  Further research on interactions 

between variables would shed more light on improving the accuracy of crash prediction models.  
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Appendix A: Results of Chi-Square Tests 
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Figure A-1. Results of Chi-square Goodness-of-fit Test on Dataset 2 
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Figure A-2. Results of Chi-square Goodness-of-fit Test on Dataset 3 
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Figure A-3. Results of Chi-square Goodness-of-fit Test on Validation Dataset 


